uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fate of three anti-influenza drugs during ozonation of wastewater effluents - degradation and formation of transformation products.
Umea Univ, Dept Chem, SE-90187 Umea, Sweden; Univ South Bohemia Ceske Budejovice, Fac Fisheries & Protect Waters, South Bohemian Res Ctr Aquaculture & Biodivers Hy, Zatisi 728-2, Vodnany 38925, Czech Republic .
Univ South Bohemia Ceske Budejovice, Fac Fisheries & Protect Waters, South Bohemian Res Ctr Aquaculture & Biodivers Hy, Zatisi 728-2, Vodnany 38925, Czech Republic.
Ozone Tech Syst OTS AB, SE-12630 Hagersten, Sweden.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infectious Diseases.
Show others and affiliations
2016 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 150, 723-730 p.Article in journal (Refereed) Published
Abstract [en]

Anti-influenza drugs constitute a key component of pandemic preparedness plans against influenza. However, the occurrence of such drugs in water environments, the potential of resistance development in the natural hosts, and the risk for transmission of antiviral resistance to humans call for measures to increase removal in wastewater treatment plants (WWTPs). In this study, removal of three anti-influenza drugs; amantadine (AM), oseltamivir carboxylate (OC) and zanamivir (ZA), and formation/removal of their transformation products during ozonation of wastewater effluents from two Swedish WWTPs in Uppsala and Stockholm were studied. The removal profile of target antivirals and formation/removal of their transformation products were studied by liquid chromatography/high resolution mass spectrometry. 3.5 h of ozone exposure (total dose of ozone 5.95 g) led to complete removal of the three anti-influenza drugs with a degradation in the following order ZA > OC > AM. Two, five and one transformation products were identified and semi-quantified for AM, OC and ZA, respectively. Increasing and later decreasing transformation products concentration followed the decrease in concentration of target compounds. All transformation products detected, except one of AM in wastewater from Stockholm WWTP, were removed at the end of the experiment. The removal efficiency was higher for all studied compounds in wastewater from Uppsala WWTP, which had lower TOC and COD values, less phosphorus, and also higher pH in the water. Ozonation thus offers multiple benefits through its potential to degrade influenza antivirals, hence decrease the risk of environmental resistance development, in addition to degrading other pharmaceuticals and resistant microorganisms.

Place, publisher, year, edition, pages
2016. Vol. 150, 723-730 p.
National Category
Medical and Health Sciences Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-272252DOI: 10.1016/j.chemosphere.2015.12.051ISI: 000372765100087PubMedID: 26746418OAI: oai:DiVA.org:uu-272252DiVA: diva2:893584
Funder
Swedish Research Council Formas, 211-2013-1320
Available from: 2016-01-12 Created: 2016-01-12 Last updated: 2017-10-04

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Järhult, Josef D.

Search in DiVA

By author/editor
Järhult, Josef D.
By organisation
Infectious Diseases
In the same journal
Chemosphere
Medical and Health SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 506 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf