uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Size-dependent surface effects in maghemite nanoparticles and its impact on interparticle interactions in dense assemblies
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
The Nanos, Inst Bioengn & Nanotechnol, Singapore 138669, Singapore..
Univ Castilla La Mancha, IRICA, E-13071 Ciudad Real, Spain.;Univ Castilla La Mancha, Dept Fis Aplicada, E-13071 Ciudad Real, Spain..
Show others and affiliations
2015 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 26, no 47, 475703Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

The question of the dominant interparticle magnetic interaction type in random closely packed assemblies of different diameter (6.2-11.5 nm) bare maghemite nanoparticles (NPs) is addressed. Single-particle magnetic properties such as particle anisotropy and exchange bias field are first of all studied in dilute (reference) systems of these same NPs, where interparticle interactions are neglible. Substantial surface spin disorder is revealed in all particles except the smallest, viz. for diameters d = 8-11.5 nm but not for d = 6.2-6.3 nm. X-ray diffraction analysis points to a crystallographic origin of this effect. The study of closely packed assemblies of the d >= 8 nm particles observes collective (superspin) freezing that clearly appears to be governed by interparticle dipole interactions. However, the dense assemblies of the smallest particles exhibit freezing temperatures that are higher than expected from a simple (dipole) extrapolation of the corresponding temperatures found in the d >= 8 nm assemblies. It is suggested that the nature of the dominant interparticle interaction in these smaller particle assemblies is superexchange, whereby the lack of significant surface spin disorder allows this mechanism to become important at the level of interacting superspins.

Place, publisher, year, edition, pages
2015. Vol. 26, no 47, 475703
Keyword [en]
nanoparticles, magnetism, dipolar, superexchange
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-272272DOI: 10.1088/0957-4484/26/47/475703ISI: 000366209100010OAI: oai:DiVA.org:uu-272272DiVA: diva2:895186
Funder
Swedish Research CouncilGöran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of Technology
Available from: 2016-01-18 Created: 2016-01-13 Last updated: 2017-11-30Bibliographically approved
In thesis
1. Interacting Magnetic Nanosystems: An Experimental Study Of Superspin Glasses
Open this publication in new window or tab >>Interacting Magnetic Nanosystems: An Experimental Study Of Superspin Glasses
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents experimental results on strongly interacting γ-Fe2O3 magnetic nanoparticles and their collective properties. The main findings are that very dense randomly packed (≈60%) γ-Fe2O3 nanoparticles form a replica of a spin glass. The magnetic properties of the nanoparticle system are in most regards the same as those of an atomic spin glass. The system is therefore proposed as a model superspin glass. In superspin glasses the interacting building blocks that form the collective state are single domain nanoparticles, superspins with a magnetic moment of about 10000 μB, which can be compared to the atomic magnetic moment in spin glasses of approximately 1 μB.  It was found that the relaxation time of the individual nanoparticles impacts the collective properties and governs the superspin dimensionality. Several dense compacts, each prepared with nanoparticles of a specific size, with diameters 6, 8, 9 and 11.5 nm, were studied. All the studied compacts were found to form a superspin glass state. Non-interacting reference samples, consisting of the same particles but coated with a silica shell, were synthesized to determine the single particle magnetic properties.  It was also found that the effects of the nanoparticle size distribution, which lead to a variation of the magnetic properties, can be mitigated by having strong enough interparticle interactions. The majority of the work was carried out using SQUID magnetometry.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 74 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1505
Keyword
spin glass, SQUID magnetometry, maghemite, magnetism, nanoparticles
National Category
Engineering and Technology Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-319717 (URN)978-91-554-9893-1 (ISBN)
Public defence
2017-06-02, Siegbahnsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-05-10 Created: 2017-04-07 Last updated: 2017-05-16

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Andersson, Mikael SvanteMathieu, RolandNordblad, Per

Search in DiVA

By author/editor
Andersson, Mikael SvanteMathieu, RolandNordblad, Per
By organisation
Solid State Physics
In the same journal
Nanotechnology
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 644 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf