uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Overcoming magnetic frustration and promoting half-metallicity in spinel CoCr2O4 by doping with Fe
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2015 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 22, 224417Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

In this paper, we present a systematic study of the effects of Fe doping on the electronic and magnetic structures of spinel CoCr2O4 by ab initio density functional theory and atomistic spin dynamics calculations. Our calculated magnetic structure for pristine CoCr2O4 correctly reproduces the experimental one with a q-vector of (0.67, 0.67,0.0), establishing the accuracy of the calculated interatomic exchange interactions. We show that the noncollinear spin structure with a nonzero q-vector in the spinel structure is driven towards collinearity by Fe doping by a complex interplay between interatomic exchange interactions. In the inverse spinel structure with 100% Fe doping, a collinear antiferromagnetic order develops along with a half-metallic electronic structure, which evolves due to the chemical disorder between Fe and Co in the B sites described by the coherent potential approximation. This is a comprehensive theoretical study to understand the evolution of magnetic and electronic properties of multiferroic CoCr2O4 doped with Fe.

Place, publisher, year, edition, pages
2015. Vol. 92, no 22, 224417
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-274283DOI: 10.1103/PhysRevB.92.224417ISI: 000366500100006OAI: oai:DiVA.org:uu-274283DiVA: diva2:900133
Funder
Carl Tryggers foundation Swedish Research CouncilEU, European Research CouncilSwedish National Infrastructure for Computing (SNIC)
Available from: 2016-02-03 Created: 2016-01-20 Last updated: 2017-11-30Bibliographically approved
In thesis
1. Magnetization dynamics of complex magnetic materials by atomistic spin dynamics simulations
Open this publication in new window or tab >>Magnetization dynamics of complex magnetic materials by atomistic spin dynamics simulations
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In recent years, there has been an intense interest in understanding the microscopic mechanism of laser induced ultrafast magnetization dynamics in picosecond time scales. Magnetization switching on such a time scale has potential to be a significant boost for the data storage industry. It is expected that the writing process will become ~1000 times faster by this technology, compared to existing techniques. Understanding the microscopic mechanisms and controlling the magnetization in such a time scale is of paramount importance at present.

In this thesis, laser induced ultrafast magnetization dynamics has been studied for Fe, Co, GdFe, CoMn and Heusler alloys. A multiscale approach has been used, i.e., first-principles density functional theory combined with atomistic spin dynamics utilizing the Landau –Lifshitz-Gilbert equation, along with a three-temperature phenomenological model to obtain the spin temperature. Special attention has been paid to the calculations of exchange interaction and Gilbert damping parameters. These parameters play a crucial role in determining the ultrafast magnetization dynamics under laser fluence of the considered materials.

The role of longitudinal and transversal excitations was studied for elemental ferromagnets, such as Fe and Co. A variety of complex temporal behavior of the magnetic properties was observed, which can be understood from the interplay between electron, spin, and lattice subsystems. The very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale was studied. We have shown that the ultrafast thermal switching process can happen above the compensation temperature in GdFe alloys. It is demonstrated that the exchange frustration via Dzyaloshinskii-Moriya interaction between the atomic Gd moments, in Gd rich area of these alloys, leads to Gd demagnetization faster than the Fe sublattice. In addition, we show that Co is a perfect Heisenberg system. Both Co and CoMn alloys have been investigated with respect to ultrafast magnetization dynamics. Also, it is predicted that ultrafast switching process can happen in the Heulser alloys when they are doped with heavy elements. Finally, we studied multiferroic CoCr2O4 and Ca3CoMnO4 systems by using the multiscale approach to study magnetization dynamics. In summary, our approach is able to capture crucial details of ultrafast magnetization dynamics in technologically important materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 89 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1456
Keyword
Ultrafast remagnetization, ultrafast dynamics, magnetism, multiferroics, amorphous alloys, DFT, spinels magnetostriction
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-308329 (URN)978-91-554-9763-7 (ISBN)
Public defence
2017-02-24, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 247062
Available from: 2017-02-03 Created: 2016-11-24 Last updated: 2017-02-23

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Chimata, RaghuveerSanyal, Biplab

Search in DiVA

By author/editor
Chimata, RaghuveerSanyal, Biplab
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 562 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf