uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Many-body effects and excitonic features in 2D biphenylene carbon
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2016 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 144, no 2, 024702Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV as well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon's excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.

Place, publisher, year, edition, pages
2016. Vol. 144, no 2, 024702
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-278016DOI: 10.1063/1.4939273ISI: 000368618400036PubMedID: 26772582OAI: oai:DiVA.org:uu-278016DiVA: diva2:906026
Funder
Knut and Alice Wallenberg Foundation
Available from: 2016-02-23 Created: 2016-02-23 Last updated: 2017-11-30Bibliographically approved
In thesis
1. Complex Excitations in Advanced Functional Materials
Open this publication in new window or tab >>Complex Excitations in Advanced Functional Materials
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding the fundamental electronic properties of materials is a key step to develop innovations in many fields of technology. For example, this has allowed to design molecular based devices like organic field effect transistors, organic solar cells and molecular switches.

In this thesis, the properties of advanced functional materials, in particular metal-organic molecules and molecular building blocks of 2D materials, are investigated by means of Density Functional Theory (DFT), the GW approximation (GWA) and the Bethe-Salpeter equation (BSE), also in conjunction with experimental studies. The main focus is on calculations aiming to understand spectroscopic results.

In detail, the molecular architectures of lutetium-bis-phthalocyanine (LuPc2) on clean and hydrogenated vicinal Si(100)2×1, and of the biphenylene molecule on Cu(111) were analysed by means of X-ray Photoelectron spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy; DFT calculations were performed to obtain insights into the atomic and electronic structures. Furthermore, detailed information about the electronic states of the gas phase iron phthalocyanine (FePc) and of the gas phase biphenylene molecule were obtained through XPS and NEXAFS spectroscopy. I have studied by means of DFT, multiplet and GWA calculations the electronic correlation effects in these systems. Also the optical, electronic and excitonic properties of a hypothetical 2D material based on the biphenylene molecule were investigated by GWA and BSE calculations. Monolayers of metal-free phthalocyanine (H2Pc) on Au(111) and of FePc on Au(111) and Cu(100)c(2×2)-2N/Cu(111) with and without pyridine modifier were studied by XPS and final state calculations. A multiplet approach to compute L-edges employing the hybridizations function, known from dynamical mean field theory, was proposed and applied to transition metal oxides.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 90 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1365
Keyword
X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, Adsorption, Phthalocyanines, Biphenylene, Excitons, Functional Materials
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-282151 (URN)978-91-554-9543-5 (ISBN)
Public defence
2016-05-13, Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-04-22 Created: 2016-04-03 Last updated: 2016-04-29

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Lüder, JohannPuglia, CarlaOttosson, HenrikEriksson, OlleSanyal, BiplabBrena, Barbara

Search in DiVA

By author/editor
Lüder, JohannPuglia, CarlaOttosson, HenrikEriksson, OlleSanyal, BiplabBrena, Barbara
By organisation
Materials TheoryMolecular and condensed matter physicsMolecular Biomimetics
In the same journal
Journal of Chemical Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 956 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf