uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Towards a mechanistic understanding of insect life history evolution: oxygen-dependent induction of moulting explains moulting sizes
Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden..
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden..
Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden..
Show others and affiliations
2016 (English)In: Biological Journal of the Linnean Society, ISSN 0024-4066, E-ISSN 1095-8312, Vol. 117, no 3, 586-600 p.Article in journal (Refereed) PublishedText
Abstract [en]

Moults characterise insect growth trajectories, typically following a consistent pattern known as Dyar's rule; proportional size increments remain constant across inter-instar moults. Empirical work suggests that oxygen limitation triggers moulting. The insect respiratory system, and its oxygen supply capacity, grows primarily at moults. It is hypothesized that the oxygen demand increases with increasing body mass, eventually meeting the oxygen supply capacity at an instar-specific critical mass where moulting is triggered. Deriving from this hypothesis, we develop a novel mathematical model for moulting and growth in insect larvae. Our mechanistic model has great success in predicting moulting sizes in four butterfly species, indirectly supporting a size-dependent mechanism underlying moulting. The results demonstrate that an oxygen-dependent induction of moulting mechanism would be sufficient to explain moulting sizes in the study species. Model predictions deviated slightly from Dyar's rule, the deviations being typically negligible within the present data range. The developmental decisions (e.g. moulting) made by growing larvae significantly affect age and size at maturity, which has important life history implications. The successful modelling of moulting presented here provides a novel framework for the development of realistic insect growth models, which are required for a better understanding of life history evolution.

Place, publisher, year, edition, pages
2016. Vol. 117, no 3, 586-600 p.
Keyword [en]
development time, growth rate, growth trajectory, larval instars, mechanistic growth model
National Category
Evolutionary Biology
URN: urn:nbn:se:uu:diva-280224DOI: 10.1111/bij.12689ISI: 000370159100015OAI: oai:DiVA.org:uu-280224DiVA: diva2:910806
Knut and Alice Wallenberg FoundationSwedish Research Council, 621-2010-5341, 621-2010-5437, 621-2010-5579
Available from: 2016-03-10 Created: 2016-03-09 Last updated: 2016-03-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Friberg, Magne
By organisation
Plant Ecology and Evolution
In the same journal
Biological Journal of the Linnean Society
Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link