uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanostructure and pore size control of template-free synthesized mesoporous magnesium carbonate Upsalite
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Department of Materials and Environmental Chemistry Stockholm University .
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-281520OAI: oai:DiVA.org:uu-281520DiVA: diva2:914479
Available from: 2016-03-24 Created: 2016-03-24 Last updated: 2016-04-29
In thesis
1. Mesoporous magnesium carbonate: Synthesis, characterization and biocompatibility
Open this publication in new window or tab >>Mesoporous magnesium carbonate: Synthesis, characterization and biocompatibility
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mesoporous materials constitute a promising class of nanomaterials for a number of applications due to their tunable pore structure. The synthesis of most mesoporous materials involves a surfactant liquid crystal structure to form the pores. As well as the many advantages associated with this method of synthesis, there are disadvantages such as high production costs and a substantial environmental impact which limit the possibilities for large scale production. Therefore there is a need for other synthesis routes.

The aim of the work described herein was to contribute to this field by developing a synthesis route that does not rely on surfactants for pore formation. A mesoporous magnesium carbonate material was therefore formed by self-assemblage of the particles around carbon dioxide gas bubbles, which functioned as pore templates. It was also possible to vary the pore diameter between 3 and 20 nm.

The biocompatibility of the formed magnesium carbonate material was evaluated in terms of in vitro cytotoxicity and hemocompatibility, in vivo skin irritation and acute systemic toxicity. The results from the in vitro cytotoxicity, in vivo skin irritation and acute systemic toxicity test using a polar extraction vehicle showed that the material was non-toxic. While signs of toxicity were observed in the acute systemic toxicity test using a non-polar solvent, this was attributed to injection of particles rather than toxic leachables. In the in vitro hemocompatibility test, no hemolytic activity was found with material concentrations of up to 1 mg/ml. It was further shown that the material had anticoagulant properties and induced moderate activation of the complement system. The anticoagulant properties were ascribed to uptake of Ca2+.

Finally, the ability of the material to increase the dissolution rate of the poorly soluble drug itraconazole was analyzed.  Itraconazole was dissolved up to 23 times faster from the magnesium carbonate pores than when the free drug was used. The release rate from the delivery vehicle was dependent on the pore diameter.

The work presented herein is expected to be useful for the development of alternative synthesis routes for mesoporous materials and also for encouraging the development of biomedical applications for these materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 75 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1363
Keyword
mesoporous, magnesium carbonate, pore size control, cytotoxicity, in vivo, skin irritation, acute systemic toxicity, hemocompatibility, Ca2+ uptake, solubility enhancement
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-281522 (URN)978-91-554-9540-4 (ISBN)
Public defence
2016-05-20, Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2016-04-27 Created: 2016-03-24 Last updated: 2016-04-29

Open Access in DiVA

No full text

By organisation
Nanotechnology and Functional Materials
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 283 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf