uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electronic correlations revealed by hybrid functional and GW calculations in the anti-aromatic biphenylene molecule
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The biphenylene molecule is an interesting new candidate as a building block for advanced 2D materials. In this study, the molecular properties of biphenylene, like ionization potential and electron affinity, as well as the HOMO-LUMO gap were computed with the GW approach and with hybrid functional Density Functional Theory. B3LYP, HSE and HSE06 were compared as well as with the OT-RSH approach. The electronic structure of the valence states obtained by GW calculations and hybrid functionals was compared to experimental valence photoelectron spectroscopy data.

National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:uu:diva-281568OAI: oai:DiVA.org:uu-281568DiVA: diva2:914615
Available from: 2016-03-24 Created: 2016-03-24 Last updated: 2016-04-29
In thesis
1. Complex Excitations in Advanced Functional Materials
Open this publication in new window or tab >>Complex Excitations in Advanced Functional Materials
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding the fundamental electronic properties of materials is a key step to develop innovations in many fields of technology. For example, this has allowed to design molecular based devices like organic field effect transistors, organic solar cells and molecular switches.

In this thesis, the properties of advanced functional materials, in particular metal-organic molecules and molecular building blocks of 2D materials, are investigated by means of Density Functional Theory (DFT), the GW approximation (GWA) and the Bethe-Salpeter equation (BSE), also in conjunction with experimental studies. The main focus is on calculations aiming to understand spectroscopic results.

In detail, the molecular architectures of lutetium-bis-phthalocyanine (LuPc2) on clean and hydrogenated vicinal Si(100)2×1, and of the biphenylene molecule on Cu(111) were analysed by means of X-ray Photoelectron spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy; DFT calculations were performed to obtain insights into the atomic and electronic structures. Furthermore, detailed information about the electronic states of the gas phase iron phthalocyanine (FePc) and of the gas phase biphenylene molecule were obtained through XPS and NEXAFS spectroscopy. I have studied by means of DFT, multiplet and GWA calculations the electronic correlation effects in these systems. Also the optical, electronic and excitonic properties of a hypothetical 2D material based on the biphenylene molecule were investigated by GWA and BSE calculations. Monolayers of metal-free phthalocyanine (H2Pc) on Au(111) and of FePc on Au(111) and Cu(100)c(2×2)-2N/Cu(111) with and without pyridine modifier were studied by XPS and final state calculations. A multiplet approach to compute L-edges employing the hybridizations function, known from dynamical mean field theory, was proposed and applied to transition metal oxides.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 90 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1365
Keyword
X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, Adsorption, Phthalocyanines, Biphenylene, Excitons, Functional Materials
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-282151 (URN)978-91-554-9543-5 (ISBN)
Public defence
2016-05-13, Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-04-22 Created: 2016-04-03 Last updated: 2016-04-29

Open Access in DiVA

No full text

Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 259 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf