uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Population Pharmacokinetics of Bedaquiline and Metabolite M2 in Patients With Drug-Resistant Tuberculosis: The Effect of Time-Varying Weight and Albumin
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
2016 (English)In: CPT: pharmacometrics and systems pharmacology, ISSN 2163-8306, Vol. 5, no 12, 682-691 p.Article in journal (Refereed) Published
Abstract [en]

Albumin concentration and body weight are altered in patients with multidrug-resistant tuberculosis (MDR-TB) and change during the long treatment period, potentially affecting drug disposition. We here describe the pharmacokinetics (PKs) of the novel anti-TB drug bedaquiline and its metabolite M2 in 335 patients with MDR-TB receiving 24 weeks of bedaquiline on top of a longer individualized background regimen. Semiphysiological models were developed to characterize the changes in weight and albumin over time. Bedaquiline and M2 disposition were well described by three and one-compartment models, respectively. Weight and albumin were correlated, typically increasing after the start of treatment, and significantly affected bedaquiline and M2 plasma disposition. Additionally, age and race were significant covariates, whereas concomitant human immunodeficiency virus (HIV) infection, sex, or having extensively drug-resistant TB was not. This is the first population model simultaneously characterizing bedaquiline and M2 PKs in its intended use population. The developed model will be used for efficacy and safety exposure-response analyses.

Place, publisher, year, edition, pages
2016. Vol. 5, no 12, 682-691 p.
National Category
Medical and Health Sciences
Research subject
Pharmaceutical Pharmacology
Identifiers
URN: urn:nbn:se:uu:diva-281724DOI: 10.1002/psp4.12147ISI: 000390923300005OAI: oai:DiVA.org:uu-281724DiVA: diva2:915422
Funder
Swedish Research Council, 521-2011-3442EU, FP7, Seventh Framework Programme, FP7/2007-2013
Note

Title in Thesis list of papers: Population pharmacokinetics of bedaquiline and metabolite M2 in drug-resistant tuberculosis patients – the effect of time-varying weight and albumin

Available from: 2016-03-30 Created: 2016-03-30 Last updated: 2017-02-08Bibliographically approved
In thesis
1. Pharmacometric Models to Improve Treatment of Tuberculosis
Open this publication in new window or tab >>Pharmacometric Models to Improve Treatment of Tuberculosis
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Tuberculosis (TB) is the world’s most deadly infectious disease and causes enormous public health problems. The comorbidity with HIV and the rise of multidrug-resistant TB strains impede successful therapy through drug-drug interactions and the lack of efficient second-line treatments. The aim of this thesis was to support the improvement of anti-TB therapy through development of pharmacometric models, specifically focusing on the novel drug bedaquiline, pharmacokinetic interactions and methods for pooled population analyses.

A population pharmacokinetic model of bedaquiline and its metabolite M2, linked to semi-mechanistic models of body weight and albumin concentrations, was developed and used for exposure-response analysis. Treatment response was quantified by measurements of mycobacterial load and early bedaquiline exposure was found to significantly impact the half-life of bacterial clearance. The analysis represents the first successful characterization of a concentration-effect relationship for bedaquiline.

Single-dose Phase I studies investigating potential interactions between bedaquiline and efavirenz, nevirapine, ritonavir-boosted lopinavir, rifampicin and rifapentine were analyzed with a model-based approach. Substantial effects were detected in several cases and dose-adjustments mitigating the impact were suggested after simulations. The interaction effects of nevirapine and ritonavir-boosted lopinavir were also confirmed in patients with multidrug-resistant TB on long-term treatment combining the antiretrovirals and bedaquiline. Furthermore, the outcomes from model-based analysis were compared to results from conventional non-compartmental analysis in a simulation study. Non-compartmental analysis was found to consistently underpredict the interaction effect when most of the concentration-time profile was not observed, as commonly is the case for compounds with very long terminal half-life such as bedaquiline.

To facilitate pooled analyses of individual patient data from multiple sources a structured development procedure was outlined and a fast diagnostic tool for extensions of the stochastic model components was developed. Pooled analyses of nevirapine and rifabutin pharmacokinetics were performed; the latter generating comprehensive dosing recommendations for combined administration of rifabutin and antiretroviral protease inhibitors.

The work presented in this thesis demonstrates the usefulness of pharmacometric techniques to improve treatment of TB and especially contributes evidence to inform optimized dosing regimens of new and old anti-TB drugs in various clinical contexts.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 79 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 214
Keyword
pharmacokinetics, pharmacodynamics, population approach, nonlinear mixed-effects models, multidrug-resistant tuberculosis, bedaquiline, antiretroviral, drug-drug interactions, time-to-event, albumin
National Category
Medical and Health Sciences
Research subject
Clinical Pharmacology
Identifiers
urn:nbn:se:uu:diva-282139 (URN)978-91-554-9539-8 (ISBN)
Public defence
2016-05-20, B21, BMC, Husargatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 521-2011-3442EU, FP7, Seventh Framework Programme, 115337EU, FP7, Seventh Framework Programme, 115156
Available from: 2016-04-28 Created: 2016-04-03 Last updated: 2016-05-12

Open Access in DiVA

fulltext(701 kB)75 downloads
File information
File name FULLTEXT01.pdfFile size 701 kBChecksum SHA-512
fc220d7b057dd8dc891d83c7f8a4c137eadb5f54da296fa019a82d860444b8a629c15bc20af2fc6df0fef2dfffea25f9731821e374f3e52e46086b380fe93950
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Svensson, Elin MDosne, Anne-GaëlleKarlsson, Mats O

Search in DiVA

By author/editor
Svensson, Elin MDosne, Anne-GaëlleKarlsson, Mats O
By organisation
Department of Pharmaceutical Biosciences
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 359 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf