uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improving the Accuracy of Registration-Based Biomechanical Analysis: A Finite Element Approach to Lung Regional Strain Quantification
Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago, Chile.;Pontificia Univ Catolica Chile, Biomed Engn Grp, Santiago, Chile..
Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago, Chile.;Pontificia Univ Catolica Chile, Biomed Engn Grp, Santiago, Chile..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care. Pontificia Univ Catolica Chile, Fac Med, Dept Med Intens, Santiago, Chile..
Pontificia Univ Catolica Chile, Fac Med, Dept Med Intens, Santiago, Chile..
Show others and affiliations
2016 (English)In: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 35, no 2, 580-588 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Tissue deformation plays an important role in lung physiology, as lung parenchyma largely deforms during spontaneous ventilation. However, excessive regional deformation may lead to lung injury, as observed in patients undergoing mechanical ventilation. Thus, the accurate estimation of regional strain has recently received great attention in the intensive care community. In this work, we assess the accuracy of regional strain maps computed from direct differentiation of B-Spline (BS) interpolations, a popular technique employed in non-rigid registration of lung computed tomography (CT) images. We show that, while BS-based registration methods give excellent results for the deformation transformation, the strain field directly computed from BS derivatives results in predictions that largely oscillate, thus introducing important errors that can even revert the sign of strain. To alleviate such spurious behavior, we present a novel finite-element (FE) method for the regional strain analysis of lung CT images. The method follows from a variational strain recovery formulation, and delivers a continuous approximation to the strain field in arbitrary domains. From analytical benchmarks, we show that the FE method results in errors that are a fraction of those found for the BS method, both in an average and pointwise sense. The application of the proposed FE method to human lung CT images results in 3D strain maps are heterogeneous and smooth, showing high consistency with specific ventilation maps reported in the literature. We envision that the proposed FE method will considerably improve the accuracy of image-based biomechanical analysis, making it reliable enough for routine medical applications.

Place, publisher, year, edition, pages
2016. Vol. 35, no 2, 580-588 p.
Keyword [en]
Finite element method, lung biomechanics, lung CT image analysis, regional lung strain
National Category
Radiology, Nuclear Medicine and Medical Imaging Respiratory Medicine and Allergy
Identifiers
URN: urn:nbn:se:uu:diva-282327DOI: 10.1109/TMI.2015.2483744ISI: 000370745600019OAI: oai:DiVA.org:uu-282327DiVA: diva2:916836
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Retamal, Jaime

Search in DiVA

By author/editor
Retamal, Jaime
By organisation
Anaesthesiology and Intensive Care
In the same journal
IEEE Transactions on Medical Imaging
Radiology, Nuclear Medicine and Medical ImagingRespiratory Medicine and Allergy

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 321 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf