uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A general view on the reactivity of the oxygen-functionalized graphene basal plane
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia..
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia..
Univ Belgrade, Fac Phys Chem, Studentski Trg 12-16, Belgrade 11158, Serbia.;Serbian Acad Arts & Sci, Knez Mihajlova 35, Belgrade 11000, Serbia..
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. KTH Royal Inst Technol, Sch Ind Engn & Management, Dept Mat Sci & Engn, Brinellvagen 23, S-10044 Stockholm, Sweden..
2016 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 9, 6580-6586 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate. The electronic states of carbon atoms located within the 2 eV interval below the Fermi level are found to be responsible for the interaction of the basal plane with the chosen adsorbates. The number of electronic states situated in this energy interval is shown to correlate with hydrogen binding energies.

Place, publisher, year, edition, pages
2016. Vol. 18, no 9, 6580-6586 p.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-282285DOI: 10.1039/c5cp07612aISI: 000371139400024PubMedID: 26866995OAI: oai:DiVA.org:uu-282285DiVA: diva2:916938
Funder
Swedish Research Council, 348-2012-6196
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Skorodumova, Natalia V.

Search in DiVA

By author/editor
Skorodumova, Natalia V.
By organisation
Materials Theory
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 328 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf