uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis.
Department of Biochemical Sciences, University of Rome “Sapienza”, Rome, Italy.
Show others and affiliations
2012 (English)In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 11, no 5, 2666-2683 p.Article in journal (Refereed) Published
Abstract [en]

14-3-3s are phosphoserine/phosphotreonine binding proteins that play pivotal roles as regulators of multiple cellular processes in eukaryotes. The flagellated protozoan parasite Giardia duodenalis, the causing agent of giardiasis, is a valuable simplified eukaryotic model. A single 14-3-3 isoform (g14-3-3) is expressed in Giardia, and it is directly involved in the differentiation of the parasite into cyst. To define the overall functions of g14-3-3, the protein interactome has been investigated. A transgenic G. duodenalis strain was engineered to express a FLAG-tagged g14-3-3 under its own promoter. Affinity chromatography coupled with tandem mass spectrometry analysis have been used to purify and identify FLAG-g14-3-3-associated proteins from trophozoites and encysting parasites. A total of 314 putative g14-3-3 interaction partners were identified, including proteins involved in several pathways. Some interactions seemed to be peculiar of one specific stage, while others were shared among the different stages. Furthermore, the interaction of g14-3-3 with the giardial homologue of the CDC7 protein kinase (gCDC7) was characterized, leading to the identification of a multiprotein complex containing not only g14-3-3 and gCDC7 but also a newly identified and highly divergent homologue of DBF4, the putative regulatory subunit of gCDC7. The relevance of g14-3-3 interactions in G. duodenalis biology was discussed.

Place, publisher, year, edition, pages
2012. Vol. 11, no 5, 2666-2683 p.
National Category
Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-282510DOI: 10.1021/pr3000199PubMedID: 22452640OAI: oai:DiVA.org:uu-282510DiVA: diva2:917140
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Sayadi, Ahmed

Search in DiVA

By author/editor
Sayadi, Ahmed
In the same journal
Journal of Proteome Research
Cell Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf