uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Function and Gene Expression of Islets Experimentally Transplanted to Muscle or Omentum
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Keyword [en]
Islet transplantation, muscle, omentum, engraftment, gene expression, laser capture microdissection
National Category
Cell and Molecular Biology
Research subject
Medical Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-282952OAI: oai:DiVA.org:uu-282952DiVA: diva2:917915
Available from: 2016-04-08 Created: 2016-04-08 Last updated: 2016-06-01
In thesis
1. Engraftment of Pancreatic Islets in Alternative Transplantation Sites and the Feasibility of in vivo Monitoring of Native and Transplanted Beta-Cell Mass
Open this publication in new window or tab >>Engraftment of Pancreatic Islets in Alternative Transplantation Sites and the Feasibility of in vivo Monitoring of Native and Transplanted Beta-Cell Mass
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Islet transplantation is a possible curative treatment for type 1 diabetes (T1D). Currently the liver dominates as implantation site, despite the many challenges encountered at this site.

Acute hypoxia in islets transplanted to muscle and omentum, two possible alternative sites, was prevailing. However, it was rapidly reversed at both implantation sites, in contrast to when islets were transplanted intraportally. At the intramuscular site hypoxia was further relieved by co-transplantation of an oxygen carrier, polymerized hemoglobin, which also improved the functional outcome. The complement system was activated after islet transplantation to muscle, but did not hamper graft function.

Both mouse and human islets transplanted to omentum become well re-vascularized and have a functional blood flow and oxygenation comparable with that of endogenous islets. Animals transplanted with islets to the omentum had a superior graft function compared with animals receiving intraportal islet grafts.

Alloxan-diabetic animals were cured with a low number of islets both when the islets were implanted in the omentum and muscle. The islet grafts responded adequately to both glucose and insulin and displayed a favorable mRNA gene expression profile.

A challenge in diabetes research and in islet transplantation is that there are no established techniques for quantifying beta-cell mass in vivo. By using radiolabeled Exendin-4, a GLP-1 receptor agonist, beta-cell mass after transplantation to muscle of mice was quantified. The results may well be translated to the clinical setting.

By comparing the pancreatic accumulation of [11C]5-hydroxy tryptophan ([11C]5-HTP) as detected by positron emission tomography (PET) in T1D patients with that of healthy controls, a 66% decrease was observed. This may in fact represent the loss of beta-cells, taking into account that other cells within the islets of Langerhans are largely unaffected in T1D. 

In conclusion, the data presented support the use of alternative implantation sites for islet transplantation. In addition to improving the functional outcome this may enable more transplantations since the number of transplanted islets may be reduced. The techniques investigated for quantifying transplanted and endogenous beta-cell mass may greatly improve our knowledge of the pathophysiology of T1D and become a valuable tool for evaluation of beta-cell mass.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 88 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1211
Keyword
Type 1 diabetes, Islet transplantation, Alternative implantation sites, Exendin-4, Positron Emission Tomography, 5-hydroxy tryptophan, Beta-cell mass
National Category
Cell and Molecular Biology
Research subject
Medical Cell Biology
Identifiers
urn:nbn:se:uu:diva-282953 (URN)978-91-554-9551-0 (ISBN)
Public defence
2016-06-01, Sal B22, BMC, Husargatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-05-11 Created: 2016-04-08 Last updated: 2016-06-01

Open Access in DiVA

No full text

Authority records BETA

Espes, Daniel

Search in DiVA

By author/editor
Espes, Daniel
By organisation
Department of Medical Cell BiologyDepartment of Medical Sciences
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 196 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf