uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Updating Rainfall Intensity-Duration-Frequency Curves in Sweden Accounting for the Observed Increase in Rainfall Extremes
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
2016 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesisAlternative title
Uppdatering av Intensitets-Varaktighetskurvor i Sverige med hänsyn till observera- de ökande trender av extrem nederbörd (Swedish)
Abstract [en]

Increased extreme precipitation has been documented in many regions around the world, in- cluding central and northern Europe. Global warming increases average temperature, which in turn enhances atmospheric water holding capacity. These changes are believed to increase the frequency and/or intensity of extreme precipitation events. In determining the design storm, or a worst probable storm, for infrastructure design and failure risk assessment, experts commonly assume that statistics of extreme precipitation do not change significantly over time. This so- called notion of stationarity assumes that the statistics of future extreme precipitation events will be similar to those of historical observations. This study investigates the consequences of using a stationary assumption as well as the alternative: a non-stationary framework that con- siders temporal changes in statistics of extremes. Here we evaluate stationary and non-stationary return levels for 10-year to 50-year extreme precipitation events for different durations (1-day, 2-day, ..., 7-day precipitation events), based on the observed daily precipitation from Sweden. Non-stationary frequency analysis is only considered for stations with statistically significant trends over the past 50 years at 95% confidence (i.e., 15 to 39 % out of 139 stations, depend- ing on duration, 1-day, 2-day, ..., 7-day). We estimate non-stationary return levels using the General Extreme Value distribution with time-dependent parameters, inferred using a Bayesian approach. The estimated return levels are then compared in terms of duration, recurrence in- terval and location. The results indicate that a stationary assumption might, when a significant trend exists, underestimate extreme precipitation return levels by up to 40 % in Sweden. This report highlights the importance of considering better methods for estimating the recurrence in- terval of extreme events in a changing climate. This is particularly important for infrastructure design and risk reduction. 

Abstract [sv]

Ökad extrem nederbörd har dokumenterats globalt, däribland centrala och norra Europa. Den globala uppvärmningen medför en förhöjd medeltemperatur vilket i sin tur ökar avdunstning av vatten från ytor samt atmosfärens förmåga att hålla vatten. Dessa förändringar tros kunna öka och intensifiera nederbörd. Vid bestämning av dimensionerande nederbördsintensiteter för byggnationsprojekt antas idag att frekvensen och storleken av extrem nederbörd inte kommer att förändras i framtiden (stationäritet), vilket i praktiken innebär ingen förändring i klimatet. Den här studien syftar till att undersöka effekten av en icke-stationärt antagande vid skattning av dimensionerande nederbördsintensitet. Icke-stationära och stationära nerderbördsintensiteter föråterkomsttider mellan 10 och 100år bestämdes utifrån daglig och flerdaglig svensk nederbörds- data. Nederbördintensiteterna bestämdes med extremvärdesanalys i mjukvaran NEVA, där den generella extremvärdesfördelningen anpassades till årlig maximum nederbörd på platser i Sverige som påvisade en ökande trend under de senaste 50åren (15% till 39 % utav 139 stationer, beroende på varaktighet). De dimensionerande nederbördsintensiteterna jämfördes sedan med avseende på varaktighet, återkomsttid och plats. Resultaten indikerade på att ett stationärt antagande riskerar att underskatta dimensionerande nederbördsintensiteter för en viss återkomsttid med upp till 40 %. Detta indikerar att antagandet om icke-stationäritet har större betydelse för olika platser i Sverige, vilket skulle kunna ge viktig information vid bestämning av dimensionerande regnintensiteter.

Place, publisher, year, edition, pages
2016. , 40 p.
Series
UPTEC W, ISSN 1401-5765 ; 16012
Keyword [en]
IDF curves, climate change, non-stationarity, stationary, Sweden, return level, re- turn period, NEVA, GEV, extreme value analysis
National Category
Water Engineering
Identifiers
URN: urn:nbn:se:uu:diva-283714OAI: oai:DiVA.org:uu-283714DiVA: diva2:919577
External cooperation
University of California, Irvine
Educational program
Master Programme in Environmental and Water Engineering
Presentation
2016-03-10, 10:49 (English)
Supervisors
Examiners
Available from: 2016-04-15 Created: 2016-04-14 Last updated: 2016-04-15Bibliographically approved

Open Access in DiVA

fulltext(1976 kB)225 downloads
File information
File name FULLTEXT01.pdfFile size 1976 kBChecksum SHA-512
f3c5b3ed16813626e134f7133747e2067de7c8ad4649f7a6112c89dac2c0abba21fe65a0d1282892aca1606c77a6ddabe544b4427eae87a9962bd06701b4be4b
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Eckersten, Sofia
By organisation
LUVAL
Water Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 225 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 397 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf