uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of transformation products from -blocking agents formed in wetland microcosms using LC-Q-ToF
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry. Natl Vet Inst SVA, Dept Chem Environm & Feed Hyg, SE-75189 Uppsala, Sweden..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry. Med Prod Agcy, Box 26, SE-75103 Uppsala, Sweden..
Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA..
Show others and affiliations
2016 (English)In: Journal of Mass Spectrometry, ISSN 1076-5174, E-ISSN 1096-9888, Vol. 51, no 3, 207-218 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Identification of degradation products from trace organic compounds, which may retain the biological activity of the parent compound, is an important step in understanding the long-term effects of these compounds on the environment. Constructed wetlands have been successfully utilized to remove contaminants from wastewater effluent, including pharmacologically active compounds. However, relatively little is known about the transformation products formed during wetland treatment. In this study, three different wetland microcosm treatments were used to determine the biotransformation products of the -adrenoreceptor antagonists atenolol, metoprolol and propranolol. LC/ESI-Q-ToF run in the MSE and MS/MS modes was used to identify and characterize the degradation products through the accurate masses of precursor and product ions. The results were compared with those of a reference standard when available. Several compounds not previously described as biotransformation products produced in wetlands were identified, including propranolol-O-sulfate, 1-naphthol and the human metabolite N-deaminated metoprolol. Transformation pathways were significantly affected by microcosm conditions and differed between compounds, despite the compounds' structural similarities. Altogether, a diverse range of transformation products in wetland microcosms were identified and elucidated using high resolving MS. This work shows that transformation products are not always easily predicted, nor formed via the same pathways even for structurally similar compounds.

Place, publisher, year, edition, pages
2016. Vol. 51, no 3, 207-218 p.
Keyword [en]
HRMS, wetland microcosms, transformation products, identification, LC-QToF, metoprolol, atenolol, propranolol
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:uu:diva-283784DOI: 10.1002/jms.3737ISI: 000372280300003PubMedID: 26956388OAI: oai:DiVA.org:uu-283784DiVA: diva2:919623
Available from: 2016-04-14 Created: 2016-04-14 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Svan, AlfredHedeland, MikaelArvidsson, TorbjörnPettersson, Curt E.

Search in DiVA

By author/editor
Svan, AlfredHedeland, MikaelArvidsson, TorbjörnPettersson, Curt E.
By organisation
Analytical Pharmaceutical Chemistry
In the same journal
Journal of Mass Spectrometry
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 386 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf