uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
TGF-alpha-driven tumor growth is inhibited by an EGF receptor tyrosine kinase inhibitor
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
2002 (English)In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 290, no 1, 349-58 p.Article in journal (Refereed) Published
Abstract [en]

The simultaneous presence of the EGFR and its ligand TGF-alpha in human tumor tissues suggests that autocrine TGF-alpha stimulation drives tumor growth. Here we show that autocrine TGF-alpha stimulation does cause increased tumor growth in vivo, an effect that was proven to be mediated via EGFR activation, and that this TGF-alpha/EGFR autocrine loop was accessible to an EGFR specific tyrosine kinase inhibitor. Clones of the EGFR expressing glioma cell line U-1242 MG were transfected with TGF-alpha cDNA using a tetracycline-inhibitory system for gene expression. TGF-alpha expression was inhibited by the presence of tetracycline, and subcutaneous tumors forming from cell lines injected into nude mice could be inhibited by feeding mice tetracycline. We confirmed that TGF-alpha mRNA and protein were present in these tumors and that, subsequently, the endogenous EGFR was activated. Tumor growth could be inhibited by an EGFR specific tyrosine kinase inhibitor of the type 4-(3-chloroanilino)-6,7-dimethoxy-quinazoline, administered daily by intraperitoneal injection, thereby interrupting the autocrine loop.

Place, publisher, year, edition, pages
2002. Vol. 290, no 1, 349-58 p.
Keyword [en]
glioma, xenograft, EGFR, TGF-α, tyrosine kinase inhibitor
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-64202DOI: 10.1006/bbrc.2001.6210PubMedID: 11779176OAI: oai:DiVA.org:uu-64202DiVA: diva2:92113
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Westermark, Bengt

Search in DiVA

By author/editor
Westermark, Bengt
By organisation
Department of Genetics and Pathology
In the same journal
Biochemical and Biophysical Research Communications - BBRC
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 570 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf