uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Förvärv av egna aktier: En studie om riskerna för missbruk ur ett aktiemarknadsperspektiv
Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Law, Department of Law.
2016 (Swedish)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [sv]

Missbruksriskerna vid förvärv av egna aktier.

Place, publisher, year, edition, pages
2016. , 61 p.
Keyword [sv]
Förvärv av egna aktier, marknadsmissbruk, återköp av egna aktier
National Category
Law
Identifiers
URN: urn:nbn:se:uu:diva-295104OAI: oai:DiVA.org:uu-295104DiVA: diva2:932928
Educational program
Law Programme
Supervisors
Examiners
Available from: 2016-07-04 Created: 2016-06-02 Last updated: 2016-07-04Bibliographically approved

Open Access in DiVA

Examensarbete Jesper Meyer(791 kB)145 downloads
File information
File name FULLTEXT01.pdfFile size 791 kBChecksum SHA-512
d5fd2685d943fba21cea0e3dde61052e848bb7771e3b858e7c27cd3e77806f3868a3bec0308cba7626baadb299d40de3ec1345de7399814411d6a6c19e586947
Type fulltextMimetype application/pdf

By organisation
Department of Law
Law

Search outside of DiVA

GoogleGoogle Scholar
Total: 145 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1191 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf