uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generation of retinal ganglion cells is modulated by caspase-dependent programmed cell death
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
2003 (English)In: European Journal of Neuroscience, ISSN 0953-816X, E-ISSN 1460-9568, Vol. 18, no 7, 1744-1750 p.Article in journal (Refereed) Published
Abstract [en]

Programmed cell death occurs during both early and late neural development. The mechanisms for the regulation and execution of the early cell death as well as its developmental role are still not fully understood. In this work we have studied the early programmed cell death in the retinal neuroepithelium. Apoptotic cells were selectively located around the optic nerve head in the retinal neuroepithelium of 2- to 6-day-old chick embryos. TUNEL-positive cells and cells which were immunostained for activated caspase-3 showed overlapping distributions suggesting that caspase-3 is involved in the early retinal cell death. Caspase-3 involvement in early retinal cell death was also demonstrated by in vivo treatment with caspase inhibitors z-DEVD-fmk and Boc-D-fmk. After 6 h of treatment, the number of TUNEL-positive cells was reduced by 50%. Sustained treatments (20 h) resulted in a slight widening in the central part of the neural retina but the retinal ganglion cell axons maintained their organization and navigation towards the optic fissure. The most prominent result after inhibition of cell death was an increase in the number of retinal ganglion cells which also produced an enlargement of the ganglion cell layer and an increased number of ganglion cell axons. In conclusion, our results show that caspase-dependent programmed cell death occurs in the embryonic chick retina and that it plays a role to modulate the generation of retinal ganglion cells.

Place, publisher, year, edition, pages
2003. Vol. 18, no 7, 1744-1750 p.
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:uu:diva-65763DOI: 10.1046/j.1460-9568.2003.02891.xPubMedID: 14622209OAI: oai:DiVA.org:uu-65763DiVA: diva2:93674
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Hallböök, Finn

Search in DiVA

By author/editor
Hallböök, Finn
By organisation
Developmental NeuroscienceDepartment of Neuroscience
In the same journal
European Journal of Neuroscience
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 573 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf