uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Morita theory for finitary 2-categories
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.
Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England..
2016 (English)In: Quantum Topology, ISSN 1663-487X, E-ISSN 1664-073X, Vol. 7, no 1, 1-28 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We develop Morita theory for finitary additive 2-representations of finitary 2-categories. As an application we describe Morita equivalence classes for 2-categories of projective functors associated to finite dimensional algebras and for 2-categories of Soergel bimodules.

Place, publisher, year, edition, pages
2016. Vol. 7, no 1, 1-28 p.
Keyword [en]
2-representation theory, finitary 2-category, Morita equivalence, projective functor
National Category
Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-298710DOI: 10.4171/QT/72ISI: 000376406500001OAI: oai:DiVA.org:uu-298710DiVA: diva2:946963
Available from: 2016-07-06 Created: 2016-07-06 Last updated: 2016-07-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Mazorchuk, Volodymyr
By organisation
Algebra and Geometry
In the same journal
Quantum Topology
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 325 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf