uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation
Univ Fed Pernambuco UFPE, Recife, PE, Brazil.;Ctr Tecnol Estrateg Nordeste CETENE, Recife, PE, Brazil..
Univ Fed Rio de Janeiro, Rio De Janeiro, RJ, Brazil.;Univ Fed Integracao Latino Amer, UNILA, Foz Do Iguacu, PR, Brazil..
Univ Fed Rio de Janeiro, Rio De Janeiro, RJ, Brazil..
Univ Fed Rio Grande do Sul, Inst Fis, Porto Alegre, RS, Brazil..
Show others and affiliations
2016 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 27, no 28, 285401Article in journal (Refereed) PublishedText
Abstract [en]

Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after similar to 100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS measurements combined with optical band gap measurements. This property facilitates an improvement of the visible-light hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 mu mol cm(-2) h(-1) for TiO2 nanotubes sensitized with CdS quantum dots.

Place, publisher, year, edition, pages
2016. Vol. 27, no 28, 285401
Keyword [en]
Brazilian MRS, TiO2 nanotubes, quantum dots, photocatalysis, hydrogen generation, charge transfer
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:uu:diva-299025DOI: 10.1088/0957-4484/27/28/285401ISI: 000377503100014PubMedID: 27251109OAI: oai:DiVA.org:uu-299025DiVA: diva2:948868
Funder
Swedish Research CouncilStandUp
Available from: 2016-07-14 Created: 2016-07-13 Last updated: 2016-07-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Araujo, Carlos M.
By organisation
Materials Theory
In the same journal
Nanotechnology
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 50 hits
ReferencesLink to record
Permanent link

Direct link