uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Designing, simulations and experiments of a passive permanent magnet bearing
Univ Fed Rio de Janeiro, Rio De Janeiro, RJ, Brazil..
Univ Fed Fluminense, Niteroi, RJ, Brazil..
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. Univ Fed Juiz de Fora, Juiz De Fora, MG, Brazil..
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Show others and affiliations
2016 (English)In: International journal of applied electromagnetics and mechanics, ISSN 1383-5416, E-ISSN 1875-8800, Vol. 51, no 2, p. 131-149Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

This paper presents simulations and experimental results for two types of Passive Permanent Magnet Bearings. The bearing system under investigation consists of two permanent magnet rings opposing to each other in two different configurations. The influence of parameters, such as thickness and radius of permanent magnets, in the force is presented through FEM calculations. Two setups of passive magnetic bearings have been built. Static measurements of radial and axial forces are reported and results compared with simulations. Also, dynamic tests show the behavior of the bearing and the magnitudes of force in the foothold. The results are presented to show trends in the parameters, so the conclusions are applicable for other sizes and applications. As an example, the application as a top bearing for a 12 kW vertical axis wind turbine is considered.

Place, publisher, year, edition, pages
2016. Vol. 51, no 2, p. 131-149
Keyword [en]
Permanent magnetic bearing, finite element method, vertical axis bearing
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:uu:diva-299628DOI: 10.3233/JAE-150162ISI: 000377871000004OAI: oai:DiVA.org:uu-299628DiVA: diva2:949829
Funder
Swedish Research CouncilStandUp
Available from: 2016-07-25 Created: 2016-07-25 Last updated: 2017-11-28Bibliographically approved
In thesis
1. Electromechanics of Vertical Axis Wind Turbines
Open this publication in new window or tab >>Electromechanics of Vertical Axis Wind Turbines
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wind power is an established mean of clean energy production and the modern horizontal axis wind turbine has become a common sight. The need for maintenance is high and future wind turbines may need to be improved to enable more remote and offshore locations. Vertical axis wind turbines have possible benefits, such as higher reliability, less noise and lower centre of gravity. This thesis focuses on electromechanical interaction in the straight bladed Darrieus rotor (H-rotor) concept studied at Uppsala University.

One of the challenges with vertical axis technology is the oscillating aerodynamic forces. A force measurement setup has been implemented to capture the forces on a three-bladed 12 kW open site prototype. The normal force showed good agreement with simulations. An aerodynamic torque could be estimated from the system. The total electrical torque in the generator was determined from electrical measurements. Both torque estimations lacked the expected aerodynamic ripple at three times per revolution. The even torque detected is an important result and more studies are required to confirm and understand it.

The force measurement was also used to study the loads on the turbine in parked conditions. It was discovered that there is a strong dependence on wind direction and that there is a positive torque on the turbine at stand still. The results can assist to determine the best parking strategies for an H-rotor turbine.

The studied concept also features diode rectification of the voltage from the permanent magnet synchronous generator. Diodes are considered a cheap and robust solution for rectification at the drawback of inducing ripple in the torque and output voltage. The propagation of the torque ripple was measured on the prototype and studied with simulations and analytical expressions. One key conclusion was that the mechanical driveline of the turbine is an effective filter of the diode induced torque ripple.

A critical speed controller was implemented on the prototype. The controller was based on optimal torque control and according to the experiments and the simulations it was able to avoid a rotational speed span. Finally, the optimal torque control was evaluated for multiple turbines with diode rectification to a common DC-link. The setup can potentially reduce the overall complexity of wind farms. The simulations suggest that stability of the system can be obtained by controlling the DC-link load as a semi constant voltage.

The thesis is based on nine papers of which six are treated in the thesis summary.

 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 81
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1581
Keyword
Wind power, Diode rectification, Control, Measurement, Simulation, Electromechanical coupling, vindkraft, diodlikriktning, reglering, mätning, simulering
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Energy Systems
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-331844 (URN)978-91-513-0117-4 (ISBN)
Public defence
2017-12-08, Å2005, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
StandUpStandUp for Wind
Available from: 2017-11-14 Created: 2017-10-18 Last updated: 2017-11-14

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

de Oliveira, Janaina G.de Santiago, JuanRossander, Morgan

Search in DiVA

By author/editor
de Oliveira, Janaina G.de Santiago, JuanRossander, Morgan
By organisation
Electricity
In the same journal
International journal of applied electromagnetics and mechanics
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 287 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf