uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Accelerated skin wound healing by CXCL12 1a delivered on site by lactic acid bacteria
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology, Integrative Physiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-299681OAI: oai:DiVA.org:uu-299681DiVA: diva2:949895
Available from: 2016-07-25 Created: 2016-07-25 Last updated: 2016-08-26Bibliographically approved
In thesis
1. Exploring immune cell functions and ways to make use of them
Open this publication in new window or tab >>Exploring immune cell functions and ways to make use of them
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In addition to host defense, alternative functions of immune cells are emerging. Immune cells are crucial during healing of injured tissue, in formation of new blood vessels, angiogenesis, and also in maintaining the balance in inflammation having immune regulating functions. Over the last decade a higher degree of heterogeneity and plasticity of immune cells have been reported and immune cells develop different characteristics in different situations in vivo.

This thesis investigates roles for immune cells in situations of muscle hypoxia and reduced blood perfusion, wound healing in skin and at sites of transplantation of allogeneic islets of Langerhans and on top of this, ways to steer immune cell function for future therapeutic purposes. A specific neutrophil subset (CD49d+VEGFR1+CXCR4high) was found to be recruited to VEGF-A released at hypoxia and these neutrophils were crucial for functional angiogenesis. In muscle with restricted blood flow macrophages were detected in perivascular positions and started to express aSMA and PDGFR1b and were found to directly assist in blood flow regulation by iNOS-dependent NO production. This essential function in muscle regain of function could be boosted by plasmid overexpression of CXCL12 where the effect of these macrophages chaperoning the vasculature was amplified improving limb blood flow regulation. The effect on macrophages accelerating tissue regeneration being amplified by CXCL12 was tested in a model of cutaneous wound healing where the administration of CXCL12 was optimized for high bioavailability. In the skin, CXCL12-treatment induced accumulation of TGFb-expressing macrophages close to the wound driving the healing process, and subsequently the wounds healed with an efficiency never reported before. In the last study means to circumvent systemic immune suppressive therapy required in allogeneic transplantation was investigated. Allogeneic islets of Langerhans transplanted to muscle were immediately destroyed by the host immune system. Co-transplanting islets and CCL22-encoding plasmids we could curb this fast rejection for 10 days by accumulating CD4+CD25+FoxP3+ regulatory T lymphocytes at the site for transplantation preventing islet grafts from being attacked by the host cytotoxic T lymphocytes.

In summary this thesis outlines distinct immune cell subsets being essential for regain of tissue function in hypoxia, ischemia and post injury and ways to amplify specific immune cell functions in these situations that are feasible for clinical use.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 53 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1242
Keyword
leukocytes, neutrophils, macrophages, regulatory T cells, chemokines, VEGF-A, hypoxia, ischemia, muscle, Islets of Langerhans, diabetes, transplantation, wound healing
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:uu:diva-299683 (URN)978-91-554-9641-8 (ISBN)
External cooperation:
Public defence
2016-09-23, A1:107a, BMC, Husargatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-09-02 Created: 2016-07-25 Last updated: 2016-09-05

Open Access in DiVA

No full text

By organisation
Integrative PhysiologyDepartment of Surgical Sciences
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link