uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt830",{id:"formSmash:upper:j_idt830",widgetVar:"widget_formSmash_upper_j_idt830",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt831_j_idt833",{id:"formSmash:upper:j_idt831:j_idt833",widgetVar:"widget_formSmash_upper_j_idt831_j_idt833",target:"formSmash:upper:j_idt831:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Convergence of directed random graphs to the Poisson-weighted infinite treePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Journal of Applied Probability, ISSN 0021-9002, E-ISSN 1475-6072, Vol. 53, no 2, p. 463-474Article in journal (Refereed) Published
##### Resource type

Text
##### Abstract [en]

##### Place, publisher, year, edition, pages

2016. Vol. 53, no 2, p. 463-474
##### Keyword [en]

Directed random graph, Poisson-weighted infinite tree, rooted geometric graph
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:uu:diva-299908DOI: 10.1017/jpr.2016.13ISI: 000378598700012OAI: oai:DiVA.org:uu-299908DiVA: diva2:950354
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1118",{id:"formSmash:j_idt1118",widgetVar:"widget_formSmash_j_idt1118",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1124",{id:"formSmash:j_idt1124",widgetVar:"widget_formSmash_j_idt1124",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1130",{id:"formSmash:j_idt1130",widgetVar:"widget_formSmash_j_idt1130",multiple:true});
Available from: 2016-07-29 Created: 2016-07-29 Last updated: 2017-11-28
##### In thesis

We consider a directed graph on the integers with a directed edge from vertex i to j present with probability n^{-1}, whenever i<j, independently of all other edges. Moreover, to each edge (i,j) we assign weight n^{-1}(j - i). We show that the closure of vertex 0 in such a weighted random graph converges in distribution to the Poisson-weighted infinite tree as n→∞. In addition, we derive limit theorems for the length of the longest path in the subgraph of the Poisson-weighted infinite tree which has all vertices at weighted distance of at most ρ from the root.

1. On Directed Random Graphs and Greedy Walks on Point Processes$(function(){PrimeFaces.cw("OverlayPanel","overlay1039330",{id:"formSmash:j_idt1391:0:j_idt1395",widgetVar:"overlay1039330",target:"formSmash:j_idt1391:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1827",{id:"formSmash:j_idt1827",widgetVar:"widget_formSmash_j_idt1827",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1880",{id:"formSmash:lower:j_idt1880",widgetVar:"widget_formSmash_lower_j_idt1880",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1881_j_idt1883",{id:"formSmash:lower:j_idt1881:j_idt1883",widgetVar:"widget_formSmash_lower_j_idt1881_j_idt1883",target:"formSmash:lower:j_idt1881:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});