uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Rapid and Precise Orbit Segmentation through Interactive 3D Painting
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Oral and Maxillofacial Surgery.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Oral and Maxillofacial Surgery.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this paper, we present an efficient interactive tool for segmenting and measuring the volume of the bony orbit (eye-socket) in computed tomography (CT) images. The tool implements a 3D painting interface that allows the user to quickly segment or "paint" the fat and soft-tissue content of the orbit by sweeping a volumetric brush over the image. The brush modifies and updates the segmentation result in real-time and takes distance and gradient information into account to fill out and find the exact boundaries of the orbit. A smooth and consistent delineation of the anterior boundary is obtained by fitting a thin-plate spline to user-selected landmarks. We evaluate the tool on 10 CT images of intact and fractured orbits and show that it achieves high intra- and inter-operator precision (mean spatial overlap 95%, less than 1 ml volume variability) and produces segmentation results that are similar to manually corrected reference segmentations, but only requires a few minutes of interaction time.

Keyword [en]
interactive segmentation, volume rendering, computed tomography, orbit
National Category
Medical Image Processing
Research subject
Computerized Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-301179OAI: oai:DiVA.org:uu-301179DiVA: diva2:953869
Available from: 2016-08-19 Created: 2016-08-19 Last updated: 2016-09-06
In thesis
1. Interactive 3D Image Analysis for Cranio-Maxillofacial Surgery Planning and Orthopedic Applications
Open this publication in new window or tab >>Interactive 3D Image Analysis for Cranio-Maxillofacial Surgery Planning and Orthopedic Applications
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern medical imaging devices are able to generate highly detailed three-dimensional (3D) images of the skeleton. Computerized image processing and analysis methods, combined with real-time volume visualization techniques, can greatly facilitate the interpretation of such images and are increasingly used in surgical planning to aid reconstruction of the skeleton after trauma or disease. Two key challenges are to accurately separate (segment) bone structures or cavities of interest from the rest of the image and to interact with the 3D data in an efficient way. This thesis presents efficient and precise interactive methods for segmenting, visualizing, and analysing 3D computed tomography (CT) images of the skeleton. The methods are validated on real CT datasets and are primarily intended to support planning and evaluation of cranio-maxillofacial (CMF) and orthopedic surgery.

Two interactive methods for segmenting the orbit (eye-socket) are introduced. The first method implements a deformable model that is guided and fitted to the orbit via haptic 3D interaction, whereas the second method implements a user-steered volumetric brush that uses distance and gradient information to find exact object boundaries.

The thesis also presents a semi-automatic method for measuring 3D angulation changes in wrist fractures. The fractured bone is extracted with interactive mesh segmentation, and the angulation is determined with a technique based on surface registration and RANSAC.

Lastly, the thesis presents an interactive and intuitive tool for segmenting individual bones and bone fragments. This type of segmentation is essential for virtual surgery planning, but takes several hours to perform with conventional manual methods. The presented tool combines GPU-accelerated random walks segmentation with direct volume rendering and interactive 3D texture painting to enable quick marking and separation of bone structures. It enables the user to produce an accurate segmentation within a few minutes, thereby removing a major bottleneck in the planning procedure.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 58 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1411
Keyword
medical image analysis, interactive segmentation, volume rendering, computed tomography
National Category
Computer Science Medical Image Processing
Research subject
Computerized Image Processing
Identifiers
urn:nbn:se:uu:diva-301180 (URN)978-91-554-9668-5 (ISBN)
External cooperation:
Public defence
2016-09-30, ITC 2446, Lägerhyddsvägen 2, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2016-09-09 Created: 2016-08-19 Last updated: 2016-09-13

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Nysjö, JohanMalmberg, FilipThor, AndreasNyström, Ingela
By organisation
Division of Visual Information and InteractionComputerized Image Analysis and Human-Computer InteractionOral and Maxillofacial Surgery
Medical Image Processing

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link