uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phosphorus availability modifies carbon production in Coccolithus pelagicus (Haptophyta)
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Palaeobiology.
Show others and affiliations
2015 (English)In: Journal of Experimental Marine Biology and Ecology, ISSN 0022-0981, E-ISSN 1879-1697, Vol. 472, 24-31 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Abstract The coccolithophore Coccolithus pelagicus (Wallich) Schiller fixes CO2 into particulate organic carbon (POC) through photosynthesis and into particulate inorganic carbon (PIC) in the form of calcite. To examine the role of phosphorus (P) availability in the production of POC and PIC, C. pelagicus subsp. braarudii (Gaarder) Geisen et al. was grown in semi-continuous cultures at three initial phosphate concentrations (P-replete, 1, and 0.5 μM [P]). Reduced P-availability (1 and 0.5 μM [P]) decreased POC production, while PIC production only decreased when phosphate concentrations became growth limiting (0.5 μM [P]). This decrease has not been observed previously in batch cultures, highlighting the inadequacy of the batch culture approach with regard to determining carbon production. The reduction in growth rate by 50% at 0.5 μM [P] was accompanied by a doubling in cell volume (and POC). PIC production was halved, resulting in a lowered PIC to POC ratio. The average number of coccoliths per cell (and PIC content) remained the same among treatments, despite the significant change in cell size. Our data suggest that POC production in C. pelagicus is more sensitive towards a moderate reduction in phosphorus availability than PIC production. Once phosphorus availability limits cell division, however, phosphorus resources are invested into POC rather than PIC production. This reduces cell density and sinking rates, indicating that coccoliths do not act as ballast for reaching deeper nutrient-rich layers under nutrient limitation.

Place, publisher, year, edition, pages
2015. Vol. 472, 24-31 p.
Keyword [en]
Calcification, Carbon production, Coccolithus pelagicus, Phosphorus limitation, Semi-continuous culture
National Category
Microbiology Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-301334OAI: oai:DiVA.org:uu-301334DiVA: diva2:954046
Available from: 2016-08-19 Created: 2016-08-19 Last updated: 2016-09-13
In thesis
1. Phenotypic evolution and adaptive strategies in marine phytoplankton (Coccolithophores)
Open this publication in new window or tab >>Phenotypic evolution and adaptive strategies in marine phytoplankton (Coccolithophores)
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Coccolithophores are biogeochemically important marine algae that interact with the carbon cycle through photosynthesis (CO2 sink), calcification (CO2 source) and burial of carbon into oceanic sediments. The group is considered susceptible to the ongoing climate perturbations, in particular to ocean acidification, temperature increase and nutrient limitation. The aim of this thesis was to investigate the adaptation of coccolithophores to environmental change, with the focus on temperature stress and nutrient limitation. The research was conducted in frame of three approaches: experiments testing the physiological response of coccolithophore species Helicosphaera carteri and Coccolithus pelagicus to phosphorus limitation, field studies on coccolithophore life-cycles with a method comparison and an investigation of the phenotypic evolution of the coccolithophore genus Helicosphaera over the past 15 Ma. Experimental results show that the physiology and morphology of large coccolithophores are sensitive to phosphorus limitation, and that the adaptation to low-nutrient conditions can lead to a decrease in calcification rates. Field studies have contributed to our understanding of coccolithophore life cycles, revealing complex ecological patterns within the Mediterranean community which are seemingly regulated by seasonal, temperature-driven environment changes. In addition, the high-throughput sequencing (HTS) molecular method was shown to provide overall good representation of coccolithophore community composition. Finally, the study on Helicosphaera evolution showed that adaptation to decreasing CO2 in higher latitudes involved cell and coccolith size decrease, whereas the adaptation in tropical ecosystems also included a physiological decrease in calcification rates in response to nutrient limitation. This thesis advanced our understanding of coccolithophore adaptive strategies and will improve our predictions on the fate of the group under ongoing climate change.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 54 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1427
Keyword
Coccolithophores, Life-Cycle, Phytoplankton, Nutrient limitation, Temperature, Microscopy, High-throughput sequencing, Taxonomy
National Category
Evolutionary Biology Environmental Sciences
Identifiers
urn:nbn:se:uu:diva-302903 (URN)978-91-554-9689-0 (ISBN)
Public defence
2016-10-28, Hambergsalen, Department of Earth Sciences, Villavägen 16, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2016-10-07 Created: 2016-09-12 Last updated: 2016-10-11

Open Access in DiVA

No full text

Other links

http://www.sciencedirect.com/science/article/pii/S0022098115001756

Search in DiVA

By author/editor
Šupraha, LukaHenderiks, Jorijntje
By organisation
Palaeobiology
In the same journal
Journal of Experimental Marine Biology and Ecology
MicrobiologyCell Biology

Search outside of DiVA

GoogleGoogle Scholar

Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf