uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Insights into the Mechanism of a Covalently-Linked Organic Dye-Cobaloxime Catalyst System for Dye Sensitized Solar Fuel Device
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. (Prof Hammarstrom Leif's group)
Show others and affiliations
(English)Manuscript (preprint) (Other (popular science, discussion, etc.)) [Artistic work]
Abstract [en]

A covalently-linked organic dye-cobaloxime catalyst system is developed by facile click reaction for mechanistic studies and application in a dye sensitized solar fuel device based on mesoporous NiO. This system has been systematically investigated by photophysical measurements, density functional theory, time resolved fluorescence, transient absorption spectroscopy as well as photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer to reduce the catalyst unit. Moreover, they suggest that the dye undergoes structural changes in the excited state and that excitation energy transfer occurs between neighboring molecules. The photoelectrochemical experiments also show the hydrogen production by this system-based NiO photocathode. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst on photocathode is eventually proposed on the basis of this study.

Keyword [en]
DSSFDs, electron transfer, Cobaloxime catalyst
National Category
Natural Sciences
Research subject
Chemistry with specialization in Chemical Physics
URN: urn:nbn:se:uu:diva-301412OAI: oai:DiVA.org:uu-301412DiVA: diva2:954567
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-31
In thesis
1. Exploring Electron Transfer Dynamics of Novel Dye Sensitized Photocathodes: Towards Solar Cells and Solar Fuels
Open this publication in new window or tab >>Exploring Electron Transfer Dynamics of Novel Dye Sensitized Photocathodes: Towards Solar Cells and Solar Fuels
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The design of dyes for NiO-based dye-sensitized solar cells (DSSCs) has drawn attention owing to their potential applications in photocatalysis and because they are indispensable for the development of tandem dye-sensitized solar cells. The understanding of the electron transfer mechanisms and dynamics is beneficial to guide further dye design and further improve the performance of photocathode in solar cells and solar fuel devices.

Time-resolved spectroscopy techniques, especially femtosecond and nanosecond transient absorption spectroscopy, supply sufficient resolution to get insights into the charge transfer processes in p-type dye sensitized solar cell and solar fuel devices. In paper I-V, several kinds of novel organic “push-pull” and inorganic charge transfer dyes for sensitization of p-type NiO, were systematically investigated by time-resolved spectroscopy, and photo-induced charge transfer dynamics of the organic/inorganic dyes were summarized. The excited state and reduced state intermediates were investigated in solution phase as references to confirm the charge injection and recombination on the NiO surface. The charge recombination kinetics is remarkably heterogeneous in some cases occurring on time scales spanning at least six orders of magnitude even for the same dye.

In this thesis, we also proposed a novel concept of solid state p-type dye sensitized solar cells (p-ssDSSCs) for the first time (paper VI), using an organic dye P1 as sensitizer on mesoporous NiO and phenyl-C61-butyric acid methyl ester (PCBM) as electron conductor. Femtosecond and nanosecond transient absorption spectroscopy gave evidence for sub-ps hole injection from excited P1 to NiO, followed by electron transfer from P1●- to PCBM. The p-ssDSSCs device showed an impressive 620 mV open circuit photovoltage.

Chapter 6 (paper VII) covers the study of electron transfer mechanisms in a covalently linked dye-catalyst (PB-2) sensitized NiO photocathode, towards hydrogen producing solar fuel devices. Hole injection from excited dye (PB-2*) into NiO VB takes place on dual time scales, and the reduced PB-2 (PB-2●-) formed then donates an electron to the catalyst unit.  The subsequent regeneration efficiency of PB-2 by the catalyst unit (the efficiency of catalyst reduction) is determined to ca. 70%.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 80 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1418
Electron transfer, Laser spectroscopy, Femtosecond spectroscopy, Transient absorption, NiO, DSSCs, DSSFDs, Charge separation, Solar energy conversion, Nanosecond photolysis, Photophysics
National Category
Chemical Sciences
Research subject
Chemistry with specialization in Chemical Physics
urn:nbn:se:uu:diva-302263 (URN)978-91-554-9678-4 (ISBN)
Public defence
2016-10-21, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Available from: 2016-09-27 Created: 2016-08-31 Last updated: 2016-09-27

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Zhang, Lei
By organisation
Department of Chemistry - Ångström
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 5 hits
ReferencesLink to record
Permanent link

Direct link