uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Imaging of Anterior Nucleus of Thalamus Using 1.5T MRI for Deep Brain Stimulation Targeting in Refractory Epilepsy
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
Show others and affiliations
2016 (English)In: Neuromodulation (Malden, Mass.), ISSN 1094-7159, E-ISSN 1525-1403, Vol. 19, no 8, 812-817 p.Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of thalamus (ANT) is an evolving treatment option in refractory focal epilepsy. Due to poor visualization of ANT in traditional MRI sequences used for movement disorder surgery, targeting of ANT is mainly based on stereotactic atlas information. Sophisticated 3T MRI methods enable visualization of ANT, but 1.5T MRI is still preferred or more readily available in a large number of centers performing DBS.

OBJECTIVE: In the present study, we sought to determine whether ANT could be adequately visualized at 1.5T MRI pre- and postoperatively using imaging techniques similar to the ones visualizing ANT in 3T MRI. A total of 15 MRI examinations with short tau inversion recovery (STIR) and T1-weighted magnetization prepared gradient echo (MPRAGE) images were performed to visualize ANT in nonepileptic subjects (n = 2), patients with vagus nerve stimulator (VNS) (n = 3), stereotactic MRI (n = 3), patients with ANT-DBS (n = 7).

RESULTS: ANT was distinctly visualized in STIR and T1-weighted MPRAGE images in patients without implanted stimulators, with Leksell stereotactic frame and with fully implanted VNS. Postoperative 1.5T MRI was able to demonstrate some of the anatomical landmarks around ANT enabling assessment of electrode contact locations.

CONCLUSIONS: The visualization of ANT is possible in preoperative 1.5T MRI enabling direct targeting of ANT all examined situations. The use of indirect targeting and its inherent potential for lead misplacement due to anatomical variation may be avoided using these MRI methods. Furthermore, postoperative MRI with STIR and T1-weighted MPRAGE images enable detailed postoperative assessment of contact locations.

Place, publisher, year, edition, pages
2016. Vol. 19, no 8, 812-817 p.
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:uu:diva-302739DOI: 10.1111/ner.12468ISI: 000392822100006PubMedID: 27398710OAI: oai:DiVA.org:uu-302739DiVA: diva2:967408
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2017-04-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Fahlström, MarkusLarsson, Elna-Marie
By organisation
NeurosurgeryRadiology
In the same journal
Neuromodulation (Malden, Mass.)
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 413 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf