uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Eddylicious: A Python package for turbulent inflow generation
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
2016 (English)In: SoftwareX, ISSN 2352-7110Article in journal (Other academic) Submitted
Place, publisher, year, edition, pages
2016.
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-302803OAI: oai:DiVA.org:uu-302803DiVA: diva2:967732
Available from: 2016-09-09 Created: 2016-09-09 Last updated: 2016-09-09Bibliographically approved
In thesis
1. Inflow generation for scale-resolving simulations of turbulent boundary layers
Open this publication in new window or tab >>Inflow generation for scale-resolving simulations of turbulent boundary layers
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Generating inflow fields for scale-resolving simulations of turbulent flow is crucial for a wide range of applications and is an active area of research. In this thesis, a method for inflow generation employing a precursor turbulent channel flow simulation is proposed. A procedure for determining the parameters of the precursor simulation based on the properties of the inflow is given. To evaluate the performance of the method, results from a simulation of a flat-plate zero-pressure-gradient turbulent boundary layer are analysed. The adaption length is quantified in terms of the development of integral quantities and the statistical moments of the velocity field. The performance is also compared with that of a state-of-the-art rescaling method for the generation of inflow data. It is shown that both approaches result in adaption lengths of comparable sizes, which makes the proposed method an attractive alternative due to its conceptual simplicity and robustness.

As part of the work on inflow generation, a Python package, eddylicious, was developed. The purpose of the package is to be a framework within which various generation methods can be implemented. The package is available online under an open-source license. An overview of the architecture and currently implemented functionality of the package is given in this thesis.

Furthermore, the results of a preparatory study on large-eddy simulation of wall-bounded turbulent flows are discussed. Fully-developed turbulent channel flow is used as a model problem, and the general-purpose computational fluid dynamics solver OpenFOAM is employed. The accuracy of the results with respect to the resolution of the computational mesh is analysed. Several modelling approaches for the subgrid scale stresses are considered.

Place, publisher, year, edition, pages
Uppsala University, 2016
Series
Information technology licentiate theses: Licentiate theses from the Department of Information Technology, ISSN 1404-5117 ; 2016-009
National Category
Computational Mathematics
Research subject
Scientific Computing with specialization in Numerical Analysis
Identifiers
urn:nbn:se:uu:diva-302808 (URN)
External cooperation:
Supervisors
Available from: 2016-09-09 Created: 2016-09-09 Last updated: 2016-09-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Mukha, TimofeyLiefvendahl, Mattias
By organisation
Division of Scientific ComputingNumerical Analysis
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link