uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ceramic Pressure Sensor for High Temperatures – Investigation of the Effect of Metallizationon on Read Range
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Swedish Def Univ, Dept Mil Sci, S-11428 Stockholm, Sweden.. (Ångström Space Technology Centre (ÅSTC), Ångström Space Technology Centre (ÅSTC))ORCID iD: 0000-0002-0501-0887
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.ORCID iD: 0000-0002-5452-7831
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (Ångström Space Technology Centre (ÅSTC), Ångström Space Technology Centre (ÅSTC))ORCID iD: 0000-0003-4468-6801
2017 (English)In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 17, no 8, 2411-2421 p.Article in journal (Refereed) Published
Abstract [en]

A study on the relationship between circuit metallization, made by double-layer screen printing of platinum and electroplating of silver on top of platinum, and its impact on practical read range of ceramic LC resonators for high-temperature pressure measurements is presented. Also included is the first realization of membranes by draping a graphite insert with ceramic green body sheets. As a quality factor circuit reference, two-port microstrip meander devices were positively evaluated and to study interdiffusion between silver and platinum, test samples were annealed at 500 degrees C, 700 degrees C, and 900 degrees C for 4, 36, 72, and 96 h. The LC resonators were fabricated with both metallization methods, and the practical read range at room temperature was evaluated. Pressure-sensitive membranes were characterized for pressures up to 2.5 bar at room temperature, 500 degrees C and up to 900 degrees C. Samples electroplated with silver exhibited performance equal to or better than double-layer platinum samples for up to 60 h at 500 degrees C, 20 h at 700 degrees C, and for 1 h at 900 degrees C, which was correlated with the degree of interdiffusion as determined from cross-sectional analysis. The LC resonator samples with double-layer platinum exhibited a read range of 61 mm, and the samples with platinum and silver exhibited a read range of 59 mm. The lowest sheet resistance, and, thereby, the highest read range of 86 mm, was obtained with a silver electroplated LC resonator sample after 36 h of annealing at 500 degrees C.

Place, publisher, year, edition, pages
2017. Vol. 17, no 8, 2411-2421 p.
Keyword [en]
Alternative metallization, ceramic membrane, harsh environment sensor, high temperature co-fired ceramics (HTCC), HTCC processing, LC resonator, pressure sensor, wireless reading
National Category
Accelerator Physics and Instrumentation Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-302852DOI: 10.1109/JSEN.2017.2671418ISI: 000398890800016OAI: oai:DiVA.org:uu-302852DiVA: diva2:968042
Available from: 2016-09-11 Created: 2016-09-11 Last updated: 2017-05-19Bibliographically approved
In thesis
1. Extending Microsystems to Very High Temperatures and Chemically Harsh Environments
Open this publication in new window or tab >>Extending Microsystems to Very High Temperatures and Chemically Harsh Environments
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Aiming at applications in space exploration as well as for monitoring natural hazards, this thesis focuses on understanding and overcoming the challenges of extending the applicability of microsystems to temperatures above 600°C as well as chemically harsh environments. Alumina and zirconia high-temperature co-fired ceramics (HTCC) with platinum as the conductor material, have in this thesis, been used to manufacture a wide range of high-temperature tolerant miniaturized sensors and actuators, including pressure and flow sensors, valves, a combustor, and liquid monopropellant microthrusters.

Interfacing for high temperatures is challenging. One solution is to transfer the signal wirelessly. Here, therefor, wireless pressure sensors have been developed and characterized up to 1000°C.

It is usually unwanted that material properties change with temperature, but by using smart designs, such changes can be exploited to sense physical properties as in the gas flow sensor presented, where the temperature-dependent electrical conductivity of zirconia has been utilized. In the same manner, various properties of platinum have been exploited to make temperature sensors, heaters and catalytic beds. By in-situ electroplating metals after sintering, even more capabilities were added, since many metals that do not tolerate HTCC processing can be added for additional functionality. An electroplated copper layer that was oxidized and used as an oxygen source in an alumina combustor intended for burning organic samples prior to sample analysis in a lab on a chip system, and a silver layer used as a catalyst in order to decompose hydrogen peroxide in a microthuster for spacecraft attitude control, are both examples that have been explored here.

Ceramics are both high-temperature tolerant and chemically resistant, making them suitable for both thrusters and combustors. The corresponding applications benefit from miniaturization of them in terms of decreased mass, power consumption, integration potential, and reduced sample waste.

Integrating many functions using as few materials as possible, is important when it comes to microsystems for harsh environments. This thesis has shown the high potential of co-fired ceramics in manufacturing microsystems for aggressive environments. However, interfacing is yet a major challenge to overcome.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 45 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1424
Keyword
HTCC, MEMS, MST, Microcombustor, Microthruster, Single-use valve, Wireless pressure sensor, flow sensor, in-situ electroplating, Monopropellant, Platinum
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-302658 (URN)978-91-554-9686-9 (ISBN)
Public defence
2016-10-31, Polhemsalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2016-10-05 Created: 2016-09-08 Last updated: 2016-10-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sturesson, PeterKhaji, ZahraKlintberg, LenaThornell, Greger
By organisation
Microsystems Technology
In the same journal
IEEE Sensors Journal
Accelerator Physics and InstrumentationEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 422 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf