uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A study on the damping coefficient of a direct-drive type wave energy converter
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.ORCID iD: 0000-0003-1022-0480
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
(English)Manuscript (preprint) (Other academic)
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-303828OAI: oai:DiVA.org:uu-303828DiVA: diva2:974140
Available from: 2016-09-24 Created: 2016-09-24 Last updated: 2016-10-27
In thesis
1. Numerical Modelling and Mechanical Studies on a Point Absorber Type Wave Energy Converter
Open this publication in new window or tab >>Numerical Modelling and Mechanical Studies on a Point Absorber Type Wave Energy Converter
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Oceans cover two thirds of the Earth’s surface and the energy potential of ocean waves as a renewable energy source is huge. It would therefore be a tremendous achievement if the vast mechanical energy in waves was converted into a form of energy that could be used successfully by society. For years, scientists and engineers have endeavored to exploit this renewable energy by inventing various generators designed to transform wave energy into electrical energy. Generally, this sort of generator is called a Wave Energy Converter (WEC).

In this thesis, the research is based on the WEC developed in the Lysekil Project. The Lysekil Project is led by a research group at Uppsala University and has a test site located on the west coast of Sweden. The project started in 2002. So far, more than ten prototypes of the WEC have been deployed and relevant experiments have been carried out at the test site. The WEC developed at Uppsala University can be categorized as a point absorber. It consists of a direct-drive linear generator connected to a floating buoy. The linear generator is deployed on the seabed and driven by a floating buoy to extract wave energy. The absorbed energy is converted to electricity and transmitted to a measuring station on land.

The work presented in this thesis focuses on building a linear generator model which is able to predict the performance of the Lysekil WEC. Studies are also carried out on the damping behavior of the WEC under the impact of different sea climates. The purpose is to optimize the energy absorption with a specific optimal damping coefficient. The obtained results indicate an optimal damping for the Lysekil WEC which can be used for optimizing the damping control.

Additionally, the impact two central engineering design features (the translator weight and the stroke length) are investigated. The aim is to find a reasonable structural design for the generator which balances the cost and the energy production.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 76 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1443
Keyword
linear generator, point absorber, numerical modelling, power production, optimal damping
National Category
Engineering and Technology
Research subject
Engineering Science
Identifiers
urn:nbn:se:uu:diva-305650 (URN)978-91-554-9731-6 (ISBN)
Public defence
2016-12-07, 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2016-11-14 Created: 2016-10-20 Last updated: 2016-11-16

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hong, Yue
By organisation
Electricity
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 274 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf