uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Downscaling of Wind Fields Using NCEP-NCAR-Reanalysis Data and the Mesoscale MIUU-Model
2006 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesisAlternative title
Nedskalning av storskaliga vindfält genom användande av återanalys data från ncep-ncar och den mesoskaliga miuu-modellen (Swedish)
Abstract [en]

The profitability from the production wind power energy is related to the quality of the wind speed forecasts. All wind predicting methods needs meteorological data, for the prevailing synoptic situation, as input. High quality input is wanted for a better result.

In this study a new idea of a method for estimation of high resolution wind fields is examined. The idea is to use an existing database, containing simulations of high resolution wind fields, to estimate the actual wind by combining the simulations in a way fitting actual synoptic data. The simulations in the database have been produced by the mesoscale MIUU-model, which has been developed by Leif Enger at Uppsala University. The database contains simulations characterized by different geostrophic wind speeds and directions. There is also a separation into four seasons, where values which are typical for each season is put on meteorological parameters.

Reanalysis data from NCEP-NCAR, containing 850 hPa geopotential heights describing actual synoptic situations, is used to calculate geostrophic wind speeds and directions. Three different geostrophic wind calculation methods, the triangle method, the small cross-method and the large cross-method, are tested. The calculated geostrophic wind is compared between the methods. The small cross-method is chosen and the main reason for that is the large amount of reanalysis information considered by this method and the use of a small calculation area.

Measurements of the wind speed and direction are available from the tower at Utgrunden. The geostrophic wind speeds and directions are therefore calculated especially for the position of Utgrunden. This is done by a linear weighting of data, from several grid points close to Utgrunden, with respect to the distance to Utgrunden. Linear weighting is also used when estimating the wind speed for Utgrunden. The wind speed is estimated by weighting together MIUU-model simulations, for different geostrophic wind speeds and directions, so that they fit the geostrophic wind values calculated for Utgrunden.

The calculated wind speed, measured wind speed and calculated geostrophic wind speed, for Utgrunden, are compared. The correspondence, between the calculated and measured wind speed, turns out to be quite good for many time periods. The diurnal variations in the measured wind speed are partly captured by calculated wind speed, but the diurnal variations tend to be larger in the measured wind speed then in the calculated. There are also cases where there are large differences between the measured and estimated wind speed. Many of these cases are probably cased by unusual weather situations. By considering additional parameters, as the temperature field, it is likely that these wind estimations can be improved. With more research it may be possible to produce high resolution wind fields with enough accuracy to be useful as inputs in wind prognostic systems. The advantage with such a method would be that accurate high resolution wind fields could be produced without the use of a time consuming numerical high resolution model.

Abstract [sv]

Lönsamheten för produktion av vindkraft elektricitet bestäms delvis av förmågan att göra bra vindprognoser för nästkommande dygn. Alla metoder för vindprognostisering behöver meteorologisk indata som beskriver den rådande synoptiska situationen. Kvaliteten och upplösningen på dessa indata har stor betydelse för metodens resultat.

I denna studie undersöks en alternativ metod för bestämning av högupplösta vind fält. Idén är att man ska försöka utnyttja en tillgänglig databas av högupplösta vindfält, producerade av den mesoskaliga MIUU – modellen som är utvecklad av Leif Enger på meteorologiska institutionen vid Uppsala Universitet. Tanken är att dessa vindfält ska kunna kombineras på ett sådant sätt att de överensstämmer med en given synoptisk situation.

MIUU – modell körningarna, i databasen, är indelade i situationer karaktäriserade av olika värden på den geostrofiska vindstyrkan och vindriktningen. Körningarna är gjorda för fyra säsonger, för vilka typiska värden för säsongen är satta på styrande parametrar. För att kunna kombinera MIUU - modell körningarna beräknas den geostrofiska vinden från 850 hPa geopotential höjd återanalys data tillgänglig från NCEP-NCAR. Tre olika beräkningsmetoder för geostrofisk vind testas och jämförs. Den ”lilla korsmetoden” väljs för uppgiften beroende på att den utnyttjar en förhållandevis stor mängd återanalys data, för beräkning av geostrofisk vind, samt använder litet beräkningsområde.

Automatiskt uppmätta värden över vindhastighet och vindriktning finns tillgängliga från en mast positionerad vid Utgrunden i Kalmar sund. Den geostrofiska vinden beräknas därför i Utgrundens position. Beräkningen utförs genom linjär viktning av data från de från Utgrunden sett fem närmaste gridpunkterna (i lilla korsmetodens gridfält). En linjär viktning används sedan även för att vikta ihop de MIUU – modell simulerade vindfälten så att de passar de beräknade värdena på geostrofisk vindhastighet och vindriktning.

Jämförelser görs mellan den beräknade vinden, den uppmätta vinden samt den geostrofiska vinden, för Utgrunden. Korrelationen, mellan uppmätt och beräknad vind, visar sig vara ganska god periodvis. Den dagliga variationen i den uppmätta vindhastigheten fångas delvis av beräkningsmetoden, men dygnsvariationen är betydligt större i den uppmätta vinden än i den beräknade. Det noteras även att det finns situationer då det är stora skillnader mellan beräknad och uppmätt vind. Dessa situationer beror i många fall troligen på onormala vädersituationer. Studium av ytterliggare parametrar, som t.ex. temperaturfältet, skulle troligen leda till betydande förbättringar i vinduppskattningen. Ytterligare forskning och förbättring av metoden skulle kunna leda till produktion av högupplösta vindfält med tillräcklig kvalitet för användning i vindprognostiseringsmodeller. Fördelen skulle i så fall vara möjligheten att kunna producera högupplösta vindfält utan användning av tidskrävande numerisk modeller.

Place, publisher, year, edition, pages
2006.
Series
Examensarbete vid Institutionen för geovetenskaper, ISSN 1650-6553 ; 127
Keyword [en]
dynamic downscaling, wind field, NCEP/NCAR reanalysis, MIUU-model
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:uu:diva-303880OAI: oai:DiVA.org:uu-303880DiVA: diva2:974323
Subject / course
Meteorology
Available from: 2016-10-04 Created: 2016-09-26 Last updated: 2016-10-04Bibliographically approved

Open Access in DiVA

fulltext(731 kB)15 downloads
File information
File name FULLTEXT01.pdfFile size 731 kBChecksum SHA-512
8e0bdf929f91b75be50dafbd4a79522a9da0c1425470d07a2abdfc30d3ddce2b9971b97463eaf802d4bd8596f1ad8de10a238fd30d31ec2183620f37868435b4
Type fulltextMimetype application/pdf

Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 189 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf