uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fusidic acid-resistant mutants of Salmonella enterica serovar typhimurium have low levels of heme and a reduced rate of respiration and are sensitive to oxidative stress
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Surface Biotechnology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
2004 (English)In: Antimicrobial Agents and Chemotherapy, ISSN 0066-4804, E-ISSN 1098-6596, Vol. 48, no 10, 3877-3883 p.Article in journal (Refereed) Published
Abstract [en]

Mutations in the translation elongation factor G (EF-G) make Salmonella enterica serovar Typhimurium resistant to the antibiotic fusidic acid. Fusr mutants are hypersensitive to oxidative stress and rapidly lose viability in the presence of hydrogen peroxide. We show that this phenotype is associated with reduced activity of two catalase enzymes, HPI (a bifunctional catalase-hydroperoxidase) and HPII (a monofunctional catalase). These catalases require the iron-binding cofactor heme for their activity. Fusr mutants have a reduced rate of transcription of hemA, a gene whose product catalyzes the first committed step in heme biosynthesis. Hypersensitivity of Fusr mutants to hydrogen peroxide is abolished by the presence of -aminolevulinic acid, the precursor of heme synthesis, in the growth media and by the addition of glutamate or glutamine, amino acids required for the first step in heme biosynthesis. Fluorescence measurements show that the level of heme in a Fusr mutant is significantly lower than it is in the wild type. Heme is also an essential cofactor of cytochromes in the electron transport chain of respiration. We found that the rate of respiration is reduced significantly in Fusr mutants. Sequestration of divalent iron in the growth media decreases the sensitivity of Fusr mutants to oxidative stress. Taken together, these results suggest that Fusr mutants are hypersensitive to oxidative stress because their low levels of heme reduce both catalase activity and respiration capacity. The sensitivity of Fusr mutants to oxidative stress could be associated with loss of viability due to iron-mediated DNA damage in the presence of hydrogen peroxide. We argue that understanding the specific nature of antibiotic resistance fitness costs in different environments may be a generally useful approach in identifying physiological processes that could serve as novel targets for antimicrobial agents.

Place, publisher, year, edition, pages
2004. Vol. 48, no 10, 3877-3883 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-71606DOI: 10.1128/AAC.48.10.3877-3883.2004PubMedID: 15388448OAI: oai:DiVA.org:uu-71606DiVA: diva2:99517
Available from: 2007-02-14 Created: 2007-02-14 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=15388448&dopt=Citation

Authority records BETA

Ballagi, AndrasHughes, Diarmaid

Search in DiVA

By author/editor
Ballagi, AndrasHughes, Diarmaid
By organisation
Department of Cell and Molecular BiologySurface Biotechnology
In the same journal
Antimicrobial Agents and Chemotherapy
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 588 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf