uu.seUppsala University Publications

Please wait ... |

Refine search result

CiteExportLink to result list
http://uu.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22categoryId%22%3A%2211502%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt482_recordPermLink",{id:"formSmash:upper:j_idt482:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt482_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt482_j_idt484",{id:"formSmash:upper:j_idt482:j_idt484",widgetVar:"widget_formSmash_upper_j_idt482_j_idt484",target:"formSmash:upper:j_idt482:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt500",{id:"formSmash:upper:j_idt500",widgetVar:"widget_formSmash_upper_j_idt500",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt500",e:"change",f:"formSmash",p:"formSmash:upper:j_idt500",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt511",{id:"formSmash:upper:j_idt511",widgetVar:"widget_formSmash_upper_j_idt511",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt511",e:"change",f:"formSmash",p:"formSmash:upper:j_idt511",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt521",{id:"formSmash:upper:j_idt521",widgetVar:"widget_formSmash_upper_j_idt521"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt584",{id:"formSmash:items:resultList:0:j_idt584",widgetVar:"widget_formSmash_items_resultList_0_j_idt584",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt587",{id:"formSmash:items:resultList:0:j_idt587",widgetVar:"widget_formSmash_items_resultList_0_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Klimek, MaciejUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.Kosek, MartaJagiellonian University, Faculty of Mathematics and Computer ScienceInstitute of Mathematics, Institute of Mathematics..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Attractors of compactly generated semigroups of regular polynomial mappings.Manuscript (preprint) (Other academic)2. Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt584",{id:"formSmash:items:resultList:1:j_idt584",widgetVar:"widget_formSmash_items_resultList_1_j_idt584",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt587",{id:"formSmash:items:resultList:1:j_idt587",widgetVar:"widget_formSmash_items_resultList_1_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Klimek, MaciejUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.Kosek, MartaJagiellonian University, Faculty of Mathematics and Computer Science, Institute of Mathematics..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Bergman Functions and Nearly Orthonormal PolynomialsManuscript (preprint) (Other academic)3. Andersson, Rasmus PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt584",{id:"formSmash:items:resultList:2:j_idt584",widgetVar:"widget_formSmash_items_resultList_2_j_idt584",onLabel:"Andersson, Rasmus ",offLabel:"Andersson, Rasmus ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Cavalieris indivisibler2018Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis4. Andrén, Dag PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt584",{id:"formSmash:items:resultList:3:j_idt584",widgetVar:"widget_formSmash_items_resultList_3_j_idt584",onLabel:"Andrén, Dag ",offLabel:"Andrén, Dag ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Om oändliga tal2015Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis5. Araaya, Tsehaye PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt584",{id:"formSmash:items:resultList:4:j_idt584",widgetVar:"widget_formSmash_items_resultList_4_j_idt584",onLabel:"Araaya, Tsehaye ",offLabel:"Araaya, Tsehaye ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The Symmetric Meixner-Pollaczek polynomials2003Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:4:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_4_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The Symmetric Meixner-Pollaczek polynomials are considered. We denote these polynomials in this thesis by

*p**n*^{(λ)}(*x*) instead of the standard notation*p**n*^{(λ)}(*x*/2,*π*/2), where λ > 0. The limiting case of these sequences of polynomials*p**n*^{(0)}(*x*) =lim_{λ→0}*p**n*^{(λ)}(*x*), is obtained, and is shown to be an orthogonal sequence in the strip,*S*= {*z*∈ ℂ : −1≤ℭ (*z*)≤1}.From the point of view of Umbral Calculus, this sequence has a special property that makes it unique in the Symmetric Meixner-Pollaczek class of polynomials: it is of convolution type. A convolution type sequence of polynomials has a unique associated operator called a delta operator. Such an operator is found for

*p**n*^{(0)}(*x*), and its integral representation is developed. A convolution type sequence of polynomials may have associated Sheffer sequences of polynomials. The set of associated Sheffer sequences of the sequence*p**n*^{(0)}(*x*) is obtained, and is foundto be ℙ = {{

*p**n*^{(λ)}(*x*)} =0 : λ ∈ R}. The major properties of these sequences of polynomials are studied.The polynomials {

*p**n*^{(λ)}(*x*)}^{∞}*n*_{=0}, λ < 0, are not orthogonal polynomials on the real line with respect to any positive real measure for failing to satisfy Favard’s three term recurrence relation condition. For every λ ≤ 0, an associated nonstandard inner product is defined with respect to which*p**n*^{(λ)}(x) is orthogonal.Finally, the connection and linearization problems for the Symmetric Meixner-Pollaczek polynomials are solved. In solving the connection problem the convolution property of the polynomials is exploited, which in turn helps to solve the general linearization problem.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt626",{id:"formSmash:items:resultList:4:j_idt626",widgetVar:"widget_formSmash_items_resultList_4_j_idt626",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. The Meixner-Pollaczek polynomials and and a system of orthogonal polynomials in a stripOpen this publication in new window or tab >>The Meixner-Pollaczek polynomials and and a system of orthogonal polynomials in a strip### Araaya, Tsehaye

Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_0_overlay_some",{id:"formSmash:items:resultList:4:j_idt627:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_0_overlay_otherAuthors",{id:"formSmash:items:resultList:4:j_idt627:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_0_overlay_otherAuthors",multiple:true}); In: Journal of computational and applied MathematicsArticle in journal (Refereed) Submitted##### Identifiers

urn:nbn:se:uu:diva-90614 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_0_overlay_j_idt802",{id:"formSmash:items:resultList:4:j_idt627:0:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_0_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_0_overlay_j_idt808",{id:"formSmash:items:resultList:4:j_idt627:0:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_0_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_0_overlay_j_idt814",{id:"formSmash:items:resultList:4:j_idt627:0:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_0_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay163040",{id:"formSmash:items:resultList:4:j_idt627:0:j_idt631",widgetVar:"overlay163040",target:"formSmash:items:resultList:4:j_idt627:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. Umbral calculus and the Symmetric Meixner-Pollaczek polynomialsOpen this publication in new window or tab >>Umbral calculus and the Symmetric Meixner-Pollaczek polynomials### Araaya, Tsehaye

Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_1_overlay_some",{id:"formSmash:items:resultList:4:j_idt627:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_1_overlay_otherAuthors",{id:"formSmash:items:resultList:4:j_idt627:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_1_overlay_otherAuthors",multiple:true}); Manuscript (Other academic)##### Identifiers

urn:nbn:se:uu:diva-90615 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_1_overlay_j_idt802",{id:"formSmash:items:resultList:4:j_idt627:1:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_1_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_1_overlay_j_idt808",{id:"formSmash:items:resultList:4:j_idt627:1:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_1_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_1_overlay_j_idt814",{id:"formSmash:items:resultList:4:j_idt627:1:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_1_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay163041",{id:"formSmash:items:resultList:4:j_idt627:1:j_idt631",widgetVar:"overlay163041",target:"formSmash:items:resultList:4:j_idt627:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. The symmetric Meixner-Pollaczek polynomials with real parameterOpen this publication in new window or tab >>The symmetric Meixner-Pollaczek polynomials with real parameter### Araaya, Tsehaye

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_2_overlay_some",{id:"formSmash:items:resultList:4:j_idt627:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_2_overlay_otherAuthors",{id:"formSmash:items:resultList:4:j_idt627:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_2_overlay_otherAuthors",multiple:true}); Manuscript (Other academic)##### Identifiers

urn:nbn:se:uu:diva-90616 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_2_overlay_j_idt802",{id:"formSmash:items:resultList:4:j_idt627:2:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_2_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_2_overlay_j_idt808",{id:"formSmash:items:resultList:4:j_idt627:2:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_2_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_2_overlay_j_idt814",{id:"formSmash:items:resultList:4:j_idt627:2:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_2_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay163042",{id:"formSmash:items:resultList:4:j_idt627:2:j_idt631",widgetVar:"overlay163042",target:"formSmash:items:resultList:4:j_idt627:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. Linearization and connection problems for the Symmetric Meixner-Pollaczek polynomialsOpen this publication in new window or tab >>Linearization and connection problems for the Symmetric Meixner-Pollaczek polynomials### Araaya, Tsehaye

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_3_overlay_some",{id:"formSmash:items:resultList:4:j_idt627:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_3_overlay_otherAuthors",{id:"formSmash:items:resultList:4:j_idt627:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_3_overlay_otherAuthors",multiple:true}); Manuscript (Other academic)##### Identifiers

urn:nbn:se:uu:diva-90617 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_3_overlay_j_idt802",{id:"formSmash:items:resultList:4:j_idt627:3:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_3_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_3_overlay_j_idt808",{id:"formSmash:items:resultList:4:j_idt627:3:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_3_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_4_j_idt627_3_overlay_j_idt814",{id:"formSmash:items:resultList:4:j_idt627:3:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_4_j_idt627_3_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay163043",{id:"formSmash:items:resultList:4:j_idt627:3:j_idt631",widgetVar:"overlay163043",target:"formSmash:items:resultList:4:j_idt627:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. Arutyunov, Gleb PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt584",{id:"formSmash:items:resultList:5:j_idt584",widgetVar:"widget_formSmash_items_resultList_5_j_idt584",onLabel:"Arutyunov, Gleb ",offLabel:"Arutyunov, Gleb ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt587",{id:"formSmash:items:resultList:5:j_idt587",widgetVar:"widget_formSmash_items_resultList_5_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Univ Hamburg, Inst Theoret Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany.;Univ Hamburg, Zentrum Math Phys, Bundesstr 55, D-20146 Hamburg, Germany.;Steklov Math Inst, Moscow, Russia..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Heinze, MartinUniv Hamburg, Inst Theoret Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany.;Univ Hamburg, Zentrum Math Phys, Bundesstr 55, D-20146 Hamburg, Germany..Medina-Rincon, DanielUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.;Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Superintegrability of geodesic motion on the sausage model2017In: Journal of Physics A: Mathematical and Theoretical, ISSN 1751-8113, E-ISSN 1751-8121, Vol. 50, no 24, article id 244002Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:5:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_5_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Reduction of the η-deformed sigma model on AdS

_{5}x S^{5}to the two-dimensional squashed sphere (S^{2})η can be viewed as a special case of the Fateev sausage model where the coupling constant*v*is imaginary. We show that geodesic motion in this model is described by a certain superintegrable mechanical system with four-dimensional phase space. This is done by means of explicitly constructing three integrals of motion which satisfy the sl(2) Poisson algebra relations, albeit being non-polynomial in momenta. Further, we find a canonical transformation which transforms the Hamiltonian of this mechanical system to the one describing the geodesic motion on the usual two-sphere. By inverting this transformation we map geodesics on this auxiliary two-sphere back to the sausage model.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Ashraf, Pouya PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt584",{id:"formSmash:items:resultList:6:j_idt584",widgetVar:"widget_formSmash_items_resultList_6_j_idt584",onLabel:"Ashraf, Pouya ",offLabel:"Ashraf, Pouya ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pathological functions and the Baire category theorem2017Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis8. Astrid, Berghult PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt584",{id:"formSmash:items:resultList:7:j_idt584",widgetVar:"widget_formSmash_items_resultList_7_j_idt584",onLabel:"Astrid, Berghult ",offLabel:"Astrid, Berghult ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Computing Science.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A practical comparison between algebraic and statistical attacks on the lightweight cipher SIMON2016Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesisAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:7:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_7_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In the summer of 2013 NSA released a new family of lightweight block ciphers called SIMON. However they did not publish any assessment of the security of SIMON. Since then only a few papers on this topic have been released and none of them have included an algebraic analysis. Moreover only one paper described a practical implementation of the attack. This master thesis aims to implement a practical attack, both algebraic and differential, on SIMON. In doing so we are able to make a comparison between the two different attack methods. The algebraic attack was executed with SAT-solver CryptoMiniSat2 and could break 7 rounds. The differential attack was implemented in three steps. First we created a difference distribution table (DDT) and then we identified a differential by a search algorithm for the DDT. In the last step we designed a key recovery attack to recover the last round key. The attack could break 13 rounds for a 9 round differential. With a simple expansion on the key recovery attack it has the potential to break even more rounds for the same 9 round differential. This indicate that algebraic cryptanalysis might not be such a strong tool since it could only break 7 rounds. Furthermore, if a generic algebraic attack does not work on SIMON it has little or no chance of being successful on a more complex cipher. In other words this algebraic attack may serve as a benchmark for the efficiency of generic algebraic attacks.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt584",{id:"formSmash:items:resultList:8:j_idt584",widgetVar:"widget_formSmash_items_resultList_8_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Boundary Behavior of*p*-Laplace Type Equations2013Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:8:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_8_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations.

Paper I concerns solutions to certain

*p*-Laplace type operators with variable coefficients. Suppose that*u*is a non-negative solution that vanishes on a part*Γ*of an Ahlfors regular NTA-domain. We prove among other things that the gradient*Du*of*u*has non-tangential limits almost everywhere on the boundary piece*Γ*, and that log|*Du*| is a BMO function on the boundary. Furthermore, for Ahlfors regular NTA-domains that are uniformly*(N,δ,r*-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough._{0})Paper II concerns solutions to a

*p*-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough.In Paper III we prove that the boundary type Riesz measure associated to an

*A*-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling.Paper IV concerns the boundary behavior of solutions to certain parabolic equations of

*p*-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case.In Paper V we are concerned with equations of

*p*-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part*Γ*of an**X**-NTA-domain, is doubling on*Γ*.Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt626",{id:"formSmash:items:resultList:8:j_idt626",widgetVar:"widget_formSmash_items_resultList_8_j_idt626",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. Estimates for Solutions to Equations of*p*-Laplace type in Ahlfors regular NTA-domainsOpen this publication in new window or tab >>Estimates for Solutions to Equations of*p*-Laplace type in Ahlfors regular NTA-domains### Avelin, Benny

### Nyström, Kaj

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_0_overlay_some",{id:"formSmash:items:resultList:8:j_idt627:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_0_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt627:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_0_overlay_otherAuthors",multiple:true}); 2014 (English)In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 266, no 9, p. 5955-6005Article in journal (Refereed) Published##### National Category

Mathematics##### Identifiers

urn:nbn:se:uu:diva-163517 (URN)10.1016/j.jfa.2014.02.027 (DOI)000334652000018 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_0_overlay_j_idt802",{id:"formSmash:items:resultList:8:j_idt627:0:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_0_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_0_overlay_j_idt808",{id:"formSmash:items:resultList:8:j_idt627:0:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_0_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_0_overlay_j_idt814",{id:"formSmash:items:resultList:8:j_idt627:0:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_0_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay464211",{id:"formSmash:items:resultList:8:j_idt627:0:j_idt631",widgetVar:"overlay464211",target:"formSmash:items:resultList:8:j_idt627:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. Boundary estimates for solutions to operators of $p$-Laplace type with lower order termsOpen this publication in new window or tab >>Boundary estimates for solutions to operators of $p$-Laplace type with lower order terms### Avelin, Benny

### Lundström, Niklas L. P.

### Nyström, Kaj

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_1_overlay_some",{id:"formSmash:items:resultList:8:j_idt627:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_1_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt627:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_1_overlay_otherAuthors",multiple:true}); 2011 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 250, no 1, p. 264-291Article in journal (Refereed) Published##### National Category

Mathematics##### Identifiers

urn:nbn:se:uu:diva-163370 (URN)10.1016/j.jde.2010.09.011 (DOI)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_1_overlay_j_idt802",{id:"formSmash:items:resultList:8:j_idt627:1:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_1_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_1_overlay_j_idt808",{id:"formSmash:items:resultList:8:j_idt627:1:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_1_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_1_overlay_j_idt814",{id:"formSmash:items:resultList:8:j_idt627:1:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_1_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay463817",{id:"formSmash:items:resultList:8:j_idt627:1:j_idt631",widgetVar:"overlay463817",target:"formSmash:items:resultList:8:j_idt627:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. Optimal doubling, Reifenberg flatness and operators of p-Laplace typeOpen this publication in new window or tab >>Optimal doubling, Reifenberg flatness and operators of p-Laplace type### Avelin, Benny

### Lundström, Niklas L.P

### Nyström, Kaj

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_2_overlay_some",{id:"formSmash:items:resultList:8:j_idt627:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_2_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt627:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_2_overlay_otherAuthors",multiple:true}); 2011 (English)In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, no 17, p. 5943-5955Article in journal (Refereed) Published##### Abstract [en]

In this paper we consider operators of p-Laplace type of the form ∇·A(x,∇u) = 0. ConcerningA we assume, for p ∈ (1,∞) fixed, an appropriate ellipticity type condition, H¨older continuityin x and that A(x, ) = ||p−1A(x, /||) whenever x ∈ Rn and ∈ Rn \ {0}. Let ⊂ Rn be abounded domain, let D be a compact subset of . We say that ˆu = ˆup,D, is the A-capacitaryfunction for D in if ˆu ≡ 1 on D, ˆu ≡ 0 on @ in the sense of W1,p0 () and ∇·A(x,∇ˆu) = 0 in \D in the weak sense. We extend ˆu to Rn \ by putting ˆu ≡ 0 on Rn \ . Then there existsa unique finite positive Borel measure ˆμ on Rn, with support in @, such thatZ hA(x,∇ˆu),∇i dx = −Z dˆμ whenever ∈ C∞0 (Rn \ D).In this paper we prove that if is Reifenberg flat with vanishing constant, thenlimr→0infw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= limr→0supw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= n−1,for every , 0 < ≤ 1. In particular, we prove that ˆμ is an asymptotically optimal doublingmeasure on @.

##### National Category

Mathematics##### Identifiers

urn:nbn:se:uu:diva-163435 (URN)10.1016/j.na.2011.05.061 (DOI)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_2_overlay_j_idt802",{id:"formSmash:items:resultList:8:j_idt627:2:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_2_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_2_overlay_j_idt808",{id:"formSmash:items:resultList:8:j_idt627:2:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_2_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_2_overlay_j_idt814",{id:"formSmash:items:resultList:8:j_idt627:2:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_2_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay463936",{id:"formSmash:items:resultList:8:j_idt627:2:j_idt631",widgetVar:"overlay463936",target:"formSmash:items:resultList:8:j_idt627:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. Boundary Estimates for Certain Degenerate and Singular Parabolic EquationsOpen this publication in new window or tab >>Boundary Estimates for Certain Degenerate and Singular Parabolic Equations### Avelin, Benny

### Gianazza, Ugo

Dipartimento di Matematica "F. Casorati", Università di Pavia.### Salsa, Sandro

Dipartimento di Matematica "F. Brioschi", Politecnico di Milano.PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_3_overlay_some",{id:"formSmash:items:resultList:8:j_idt627:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_3_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt627:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_3_overlay_otherAuthors",multiple:true}); 2016 (English)In: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 18, no 2, p. 381-424Article in journal (Refereed) Published##### Abstract [en]

We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p-Laplace equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S-T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular parabolic equations of porous medium type.

##### Keywords

Degenerate and singular parabolic equations; Harnack estimates; boundary Harnack inequality; Carleson estimate##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-186267 (URN)10.4171/JEMS/593 (DOI)000370249100005 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_3_overlay_j_idt802",{id:"formSmash:items:resultList:8:j_idt627:3:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_3_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_3_overlay_j_idt808",{id:"formSmash:items:resultList:8:j_idt627:3:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_3_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_3_overlay_j_idt814",{id:"formSmash:items:resultList:8:j_idt627:3:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_3_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay572812",{id:"formSmash:items:resultList:8:j_idt627:3:j_idt631",widgetVar:"overlay572812",target:"formSmash:items:resultList:8:j_idt627:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 5. Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measuresOpen this publication in new window or tab >>Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures### Avelin, Benny

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.### Nyström, Kaj

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_4_overlay_some",{id:"formSmash:items:resultList:8:j_idt627:4:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_4_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_4_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt627:4:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_4_overlay_otherAuthors",multiple:true}); 2013 (English)In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 85, p. 149-159Article in journal (Refereed) Published##### Abstract [en]

Let be a system of

*C*^{∞}vector fields in*R*^{n}satisfying Hörmander’s finite rank condition and let*Ω*be a non-tangentially accessible domain with respect to the Carnot–Carathéodory distance*d*induced by*X*. We prove the doubling property of certain boundary measures associated to non-negative solutions, which vanish on a portion of*∂**Ω*, to the equationGiven

*p*, 1<*p*<*∞*, fixed, we impose conditions on the function*A*=(*A*_{1},…,*A*_{m}):*R*^{n}×*R*^{m}→*R*^{m}, which imply that the equation is a quasi-linear partial differential equation of*p*-Laplace type structured on vector fields satisfying the classical Hörmander condition. In the case*p*=2 and for linear equations, our result coincides with the doubling property of associated elliptic measures. To prove our result we establish, and this is of independent interest, a Wolff potential estimate for subelliptic equations of*p*-Laplace type.##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-186268 (URN)10.1016/j.na.2013.02.023 (DOI)000318378700013 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_4_overlay_j_idt802",{id:"formSmash:items:resultList:8:j_idt627:4:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_4_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_4_overlay_j_idt808",{id:"formSmash:items:resultList:8:j_idt627:4:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_4_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_4_overlay_j_idt814",{id:"formSmash:items:resultList:8:j_idt627:4:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_4_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay572813",{id:"formSmash:items:resultList:8:j_idt627:4:j_idt631",widgetVar:"overlay572813",target:"formSmash:items:resultList:8:j_idt627:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 6. On a one-phase free boundary problemOpen this publication in new window or tab >>On a one-phase free boundary problem### Avelin, Benny

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_5_overlay_some",{id:"formSmash:items:resultList:8:j_idt627:5:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_5_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_5_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt627:5:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_5_overlay_otherAuthors",multiple:true}); 2013 (English)In: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 38, no 1, p. 181-191Article in journal (Other academic) Published##### Abstract [en]

In this paper we extend a result regarding the free boundary regularity in a one-phaseproblem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

##### Keywords

One-phase, free boundary, NTA, non-divergence, linear##### National Category

Mathematical Analysis##### Research subject

Mathematics##### Identifiers

urn:nbn:se:uu:diva-186265 (URN)10.5186/aasfm.2013.3815 (DOI)000316239200009 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_5_overlay_j_idt802",{id:"formSmash:items:resultList:8:j_idt627:5:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_5_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_5_overlay_j_idt808",{id:"formSmash:items:resultList:8:j_idt627:5:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_5_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt627_5_overlay_j_idt814",{id:"formSmash:items:resultList:8:j_idt627:5:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_8_j_idt627_5_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay572809",{id:"formSmash:items:resultList:8:j_idt627:5:j_idt631",widgetVar:"overlay572809",target:"formSmash:items:resultList:8:j_idt627:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt584",{id:"formSmash:items:resultList:9:j_idt584",widgetVar:"widget_formSmash_items_resultList_9_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On a one-phase free boundary problem2013In: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 38, no 1, p. 181-191Article in journal (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:9:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_9_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we extend a result regarding the free boundary regularity in a one-phaseproblem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt584",{id:"formSmash:items:resultList:10:j_idt584",widgetVar:"widget_formSmash_items_resultList_10_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt587",{id:"formSmash:items:resultList:10:j_idt587",widgetVar:"widget_formSmash_items_resultList_10_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Gianazza, UgoDipartimento di Matematica "F. Casorati", Università di Pavia.Salsa, SandroDipartimento di Matematica "F. Brioschi", Politecnico di Milano.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Boundary Estimates for Certain Degenerate and Singular Parabolic Equations2016In: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 18, no 2, p. 381-424Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:10:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_10_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p-Laplace equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S-T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular parabolic equations of porous medium type.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt584",{id:"formSmash:items:resultList:11:j_idt584",widgetVar:"widget_formSmash_items_resultList_11_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt587",{id:"formSmash:items:resultList:11:j_idt587",widgetVar:"widget_formSmash_items_resultList_11_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaPersson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity2015In: Potential Analysis, ISSN 0926-2601, E-ISSN 1572-929X, Vol. 43, no 3, p. 531-545Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:11:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_11_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that bounded pseudoconvex domains that are Hölder continuous for all α < 1 are hyperconvex, extending the well-known result by Demailly (Math. Z. 184 1987) beyond Lipschitz regularity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt584",{id:"formSmash:items:resultList:12:j_idt584",widgetVar:"widget_formSmash_items_resultList_12_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt587",{id:"formSmash:items:resultList:12:j_idt587",widgetVar:"widget_formSmash_items_resultList_12_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaDepartment of mathematics and mathematical statistics, Umeå University.Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Approximation and Bounded Plurisubharmonic Exhaustion Functions Beyond Lipschitz DomainsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:12:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_12_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Using techniques from the analysis of PDEs to studythe boundary behaviour of functions on domains with low boundaryregularity, we extend results by Fornaæss-Wiegerinck (1989)on plurisubharmonic approximation and by Demailly (1987) onthe existence on bounded plurisubharmonic exhaustion functionsto domains beyond Lipschitz boundary regularity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt584",{id:"formSmash:items:resultList:13:j_idt584",widgetVar:"widget_formSmash_items_resultList_13_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt587",{id:"formSmash:items:resultList:13:j_idt587",widgetVar:"widget_formSmash_items_resultList_13_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaUmeå University.Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Approximation of plurisubharmonic functions2016In: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 61, no 1, p. 23-28Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:13:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_13_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt584",{id:"formSmash:items:resultList:14:j_idt584",widgetVar:"widget_formSmash_items_resultList_14_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt587",{id:"formSmash:items:resultList:14:j_idt587",widgetVar:"widget_formSmash_items_resultList_14_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Aalto University, Institute of Mathematics, P.O. Box 11100, FI-00076 Aalto, Finland.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Julin, VesaUniv Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term2017In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 272, no 8, p. 3176-3215Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:14:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_14_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper concerns the boundary behavior of solutions of certain fully nonlinear equations with a general drift term. We elaborate on the non-homogeneous generalized Harnack inequality proved by the second author in [26], to prove a generalized Carleson estimate. We also prove boundary Holder continuity and a boundary Harnack type inequality.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt584",{id:"formSmash:items:resultList:15:j_idt584",widgetVar:"widget_formSmash_items_resultList_15_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt587",{id:"formSmash:items:resultList:15:j_idt587",widgetVar:"widget_formSmash_items_resultList_15_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lukkari, TeemuAalto Univ, Finland.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A comparison principle for the porous medium equation and its consequences2017In: Revista matemática iberoamericana, ISSN 0213-2230, E-ISSN 2235-0616, Vol. 33, no 2, p. 573-594Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:15:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_15_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We prove a comparison principle for the porous medium equation in more general open sets in Rn+1 than space-time cylinders. We apply this result in two related contexts: we establish a connection between a potential theoretic notion of the obstacle problem and a notion based on a variational inequality. We also prove the basic properties of the PME capacity, in particular that there exists a capacitary extremal which gives the capacity for compact sets.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt584",{id:"formSmash:items:resultList:16:j_idt584",widgetVar:"widget_formSmash_items_resultList_16_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt587",{id:"formSmash:items:resultList:16:j_idt587",widgetVar:"widget_formSmash_items_resultList_16_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Nyström, KajUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures2013In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 85, p. 149-159Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:16:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_16_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let be a system of

*C*^{∞}vector fields in*R*^{n}satisfying Hörmander’s finite rank condition and let*Ω*be a non-tangentially accessible domain with respect to the Carnot–Carathéodory distance*d*induced by*X*. We prove the doubling property of certain boundary measures associated to non-negative solutions, which vanish on a portion of*∂**Ω*, to the equationGiven

*p*, 1<*p*<*∞*, fixed, we impose conditions on the function*A*=(*A*_{1},…,*A*_{m}):*R*^{n}×*R*^{m}→*R*^{m}, which imply that the equation is a quasi-linear partial differential equation of*p*-Laplace type structured on vector fields satisfying the classical Hörmander condition. In the case*p*=2 and for linear equations, our result coincides with the doubling property of associated elliptic measures. To prove our result we establish, and this is of independent interest, a Wolff potential estimate for subelliptic equations of*p*-Laplace type.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 18. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt584",{id:"formSmash:items:resultList:17:j_idt584",widgetVar:"widget_formSmash_items_resultList_17_j_idt584",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt587",{id:"formSmash:items:resultList:17:j_idt587",widgetVar:"widget_formSmash_items_resultList_17_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Aalto Univ, Dept Math & Syst Anal, Sch Sci, Aalto 00076, Finland..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Saari, OlliAalto Univ, Dept Math & Syst Anal, Sch Sci, Aalto 00076, Finland..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Characterizations of interior polar sets for the degenerate*p*-parabolic equation2017In: Journal of evolution equations (Printed ed.), ISSN 1424-3199, E-ISSN 1424-3202, Vol. 17, no 2, p. 827-848Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:17:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_17_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper deals with different characterizations of sets of nonlinear parabolic capacity zero, with respect to the parabolic

*p*-Laplace equation. Specifically we prove that certain interior polar sets can be characterized by sets of zero nonlinear parabolic capacity. Furthermore we prove that zero capacity sets are removable for bounded supersolutions and that sets of zero capacity have a relation to a certain parabolic Hausdorff measure.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Azzam, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt584",{id:"formSmash:items:resultList:18:j_idt584",widgetVar:"widget_formSmash_items_resultList_18_j_idt584",onLabel:"Azzam, Jonas ",offLabel:"Azzam, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt587",{id:"formSmash:items:resultList:18:j_idt587",widgetVar:"widget_formSmash_items_resultList_18_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); University of Washington, Seattle, USA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hofmann, SteveUniversity of Missouri, Columbia, USA.Martell, Jose MariaInstituto de Ciencias Matematicas, Madrid, Spain.Nyström, KajUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.Toro, TatianaUniversity of Washington, Seattle, USA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A new characterization of chord-arc domains2017In: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 19, no 4, p. 967-981Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:18:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_18_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that if Ω⊂Rn

^{+1}, n≥1, is a uniform domain (also known as a 1-sided NTA domain), i.e., a domain which enjoys interior Corkscrew and Harnack Chain conditions, then uniform rectifiability of the boundary of Ω implies the existence of exterior corkscrew points at all scales, so that in fact, Ω is a chord-arc domain, i.e., a domain with an Ahlfors-David regular boundary which satisfies both interior and exterior corkscrew conditions, and an interior Harnack chain condition. We discuss some implications of this result for theorems of F. and M. Riesz type, and for certain free boundary problems.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:18:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 20. Babaoglu, Ceni et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt587",{id:"formSmash:items:resultList:19:j_idt587",widgetVar:"widget_formSmash_items_resultList_19_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Bazarganzadeh, MahmoudrezaDepartment of Mathematics, Stockholm University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Some properties of two-phase quadrature domains2011In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, no 10, p. 3386-3396Article in journal (Refereed)21. Bartoszek, Krzysztof PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt584",{id:"formSmash:items:resultList:20:j_idt584",widgetVar:"widget_formSmash_items_resultList_20_j_idt584",onLabel:"Bartoszek, Krzysztof ",offLabel:"Bartoszek, Krzysztof ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt587",{id:"formSmash:items:resultList:20:j_idt587",widgetVar:"widget_formSmash_items_resultList_20_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Bartoszek, WojciechGdansk Univ Technol, Dept Probabil & Biomath, Ul Narutowicza 11-12, PL-80233 Gdansk, Poland..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Noether theorem for stochastic operators on Schatten classes2017In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 452, no 2, p. 1395-1412Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:20:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_20_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that a stochastic (Markov) operator S acting on a Schatten class C-1 satisfies the Noether condition (i.e. S' (A) = A and S' (A(2)) = A(2), where A is an element of C-infinity is a Hermitian and bounded operator on a fixed separable and complex Hilbert space (H, <.,.>)), if and only if S(E-A(G)XEA(G)) = E-A (G)S(X)E-A (G) for any state X is an element of C-1 and all Borel sets G subset of R, where E-A (G) denotes the orthogonal projection coming from the spectral resolution A = integral(sigma(A)) zE(A)(dz). Similar results are obtained for stochastic one-parameter continuous semigroups.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:20:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 22. Bartoszek, Krzysztof PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt584",{id:"formSmash:items:resultList:21:j_idt584",widgetVar:"widget_formSmash_items_resultList_21_j_idt584",onLabel:"Bartoszek, Krzysztof ",offLabel:"Bartoszek, Krzysztof ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt587",{id:"formSmash:items:resultList:21:j_idt587",widgetVar:"widget_formSmash_items_resultList_21_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Applied Mathematics and Statistics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pulka, MalgorztaGdansk University of Technology.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Asymptotic properties of quadratic stochastic operators acting on the L1 space2015In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 114, p. 26-39Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:21:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_21_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Quadratic stochastic operators can exhibit a wide variety of asymptotic behaviours andthese have been introduced and studied recently in the l1 space. It turns out that inprinciple most of the results can be carried over to the L1 space. However, due to topologicalproperties of this space one has to restrict in some situations to kernel quadratic stochasticoperators. In this article we study the uniform and strong asymptotic stability of quadratic stochastic operators acting on the L1 space in terms of convergence of the associated (linear)nonhomogeneous Markov chains.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:21:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 23. Bazarganzadeh, Mahmoudreza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt584",{id:"formSmash:items:resultList:22:j_idt584",widgetVar:"widget_formSmash_items_resultList_22_j_idt584",onLabel:"Bazarganzadeh, Mahmoudreza ",offLabel:"Bazarganzadeh, Mahmoudreza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Free Boundary Problems of Obstacle Type, a Numerical and Theoretical Study2012Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:22:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_22_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of five papers and it mainly addresses the theory and schemes to approximate the quadrature domains, QDs. The first deals with the uniqueness and some qualitative properties of the two QDs. The concept of two phase QDs, is more complicated than its one counterpart and consequently introduces significant and interesting open.

We present two numerical schemes to approach the one phase QDs in the paper. The first method is based on the properties of the free boundary the level set techniques. We use shape optimization analysis to construct second method. We illustrate the efficiency of the schemes on a variety of experiments.

In the third paper we design two finite difference methods for the approximation of the multi phase QDs. We prove that the second method enjoys monotonicity, consistency and stability and consequently it is a convergent scheme by Barles-Souganidis theorem. We also present various numerical simulations in the case of Dirac measures.

We introduce the QDs in a sub domain of and

**R**^{n}study the existence and uniqueness along with a numerical scheme based on the level set method in the fourth paper.In the last paper we study the tangential touch for a semi-linear problem. We prove that there is just one phase free boundary points on the flat part of the fixed boundary and it is also shown that the free boundary is a uniform

*C*^{1}-graph up to that part.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt626",{id:"formSmash:items:resultList:22:j_idt626",widgetVar:"widget_formSmash_items_resultList_22_j_idt626",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. Some properties of two-phase quadrature domainsOpen this publication in new window or tab >>Some properties of two-phase quadrature domains### Babaoglu, Ceni

### Bazarganzadeh, Mahmoudreza

Department of Mathematics, Stockholm University.PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_0_overlay_some",{id:"formSmash:items:resultList:22:j_idt627:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_0_overlay_otherAuthors",{id:"formSmash:items:resultList:22:j_idt627:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_0_overlay_otherAuthors",multiple:true}); 2011 (English)In: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, no 10, p. 3386-3396Article in journal (Refereed) Published##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-163099 (URN)10.1016/j.na.2011.02.014 (DOI)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_0_overlay_j_idt802",{id:"formSmash:items:resultList:22:j_idt627:0:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_0_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_0_overlay_j_idt808",{id:"formSmash:items:resultList:22:j_idt627:0:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_0_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_0_overlay_j_idt814",{id:"formSmash:items:resultList:22:j_idt627:0:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_0_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay462718",{id:"formSmash:items:resultList:22:j_idt627:0:j_idt631",widgetVar:"overlay462718",target:"formSmash:items:resultList:22:j_idt627:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. Numerical Approximation of One Phase Quadrature DomainsOpen this publication in new window or tab >>Numerical Approximation of One Phase Quadrature Domains### Bazarganzadeh, Mahmoudreza

### Bozorgnia, Farid

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_1_overlay_some",{id:"formSmash:items:resultList:22:j_idt627:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_1_overlay_otherAuthors",{id:"formSmash:items:resultList:22:j_idt627:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_1_overlay_otherAuthors",multiple:true}); 2013 (English)In: Numerical Methods for Partial Differential Equations, ISSN 0749-159X, E-ISSN 1098-2426, Vol. 29, no 5, p. 1709-1728Article in journal (Other academic) Published##### Abstract [en]

In this work, we present two numerical schemes for a free boundary problem called one phase quadrature domain. In the first method by applying the proprieties of given free boundary problem, we derive a method that leads to a fast iterative solver. The iteration procedure is adapted in order to work in the case when topology changes. The second method is based on shape reconstruction to establish an efficient Shape-Quasi-Newton-Method. Various numerical experiments confirm the efficiency of the derived numerical methods.

##### National Category

Computational Mathematics##### Identifiers

urn:nbn:se:uu:diva-170221 (URN)10.1002/num.21773 (DOI)000322203200013 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_1_overlay_j_idt802",{id:"formSmash:items:resultList:22:j_idt627:1:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_1_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_1_overlay_j_idt808",{id:"formSmash:items:resultList:22:j_idt627:1:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_1_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_1_overlay_j_idt814",{id:"formSmash:items:resultList:22:j_idt627:1:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_1_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay508620",{id:"formSmash:items:resultList:22:j_idt627:1:j_idt631",widgetVar:"overlay508620",target:"formSmash:items:resultList:22:j_idt627:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. Numerical Schemes for Multi Phase Quadrature DomainsOpen this publication in new window or tab >>Numerical Schemes for Multi Phase Quadrature Domains### Bozorgnia, Farid

Mathematics department.### Bazarganzadeh, Mahmoudreza

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_2_overlay_some",{id:"formSmash:items:resultList:22:j_idt627:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_2_overlay_otherAuthors",{id:"formSmash:items:resultList:22:j_idt627:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_2_overlay_otherAuthors",multiple:true}); 2014 (English)In: International Journal of Numerical Analysis & Modeling, ISSN 1705-5105, Vol. 11, no 4, p. 726-744Article in journal (Refereed) Published##### Abstract [en]

In this work, numerical schemes to approximate the solution of one and multi phase quadrature domains are presented. We shall construct a monotone, stable and consistent finite difference method for both one and two phase cases, which converges to the viscosity solution of the partial differential equation arising from the corresponding quadrature domain theory. Moreover, we will discuss the numerical implementation of the resulting approach and present computational tests.

##### Keywords

Quadrature domain; Free boundary problem; Finite difference method; Degenerate elliptic equation##### National Category

Mathematics##### Research subject

Numerical Analysis##### Identifiers

urn:nbn:se:uu:diva-183391 (URN)000343624500004 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_2_overlay_j_idt802",{id:"formSmash:items:resultList:22:j_idt627:2:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_2_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_2_overlay_j_idt808",{id:"formSmash:items:resultList:22:j_idt627:2:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_2_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_2_overlay_j_idt814",{id:"formSmash:items:resultList:22:j_idt627:2:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_2_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay562597",{id:"formSmash:items:resultList:22:j_idt627:2:j_idt631",widgetVar:"overlay562597",target:"formSmash:items:resultList:22:j_idt627:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. Quadrature domains in a subdomain of R^n, theory and a numerical approachOpen this publication in new window or tab >>Quadrature domains in a subdomain of R^n, theory and a numerical approach### Bazarganzadeh, Mahmoudreza

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_3_overlay_some",{id:"formSmash:items:resultList:22:j_idt627:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_3_overlay_otherAuthors",{id:"formSmash:items:resultList:22:j_idt627:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_3_overlay_otherAuthors",multiple:true}); (English)Manuscript (preprint) (Other academic)##### Keywords

free boundary problems, quadrature domain, level set method##### National Category

Mathematics##### Research subject

Mathematics with specialization in Applied Mathematics; Numerical Analysis##### Identifiers

urn:nbn:se:uu:diva-183392 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_3_overlay_j_idt802",{id:"formSmash:items:resultList:22:j_idt627:3:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_3_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_3_overlay_j_idt808",{id:"formSmash:items:resultList:22:j_idt627:3:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_3_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_3_overlay_j_idt814",{id:"formSmash:items:resultList:22:j_idt627:3:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_3_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay562599",{id:"formSmash:items:resultList:22:j_idt627:3:j_idt631",widgetVar:"overlay562599",target:"formSmash:items:resultList:22:j_idt627:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 5. Tangential Touch between the Free and the Fixed Boundary in a Semilinear Free Boundary Problem in Two DimensionsOpen this publication in new window or tab >>Tangential Touch between the Free and the Fixed Boundary in a Semilinear Free Boundary Problem in Two Dimensions### Bazarganzadeh, Mahmoudreza

### Lindgren, Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_4_overlay_some",{id:"formSmash:items:resultList:22:j_idt627:4:overlay:some",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_4_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_4_overlay_otherAuthors",{id:"formSmash:items:resultList:22:j_idt627:4:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_4_overlay_otherAuthors",multiple:true}); 2014 (English)In: Arkiv för matematik, ISSN 0004-2080, E-ISSN 1871-2487, Vol. 52, no 1, p. 21-42Article in journal (Refereed) Published##### Abstract [en]

We study minimizers of the functional where B_{1}^{{\mathchoice {\raise .17ex\hbox {\scriptstyle +}} {\raise .17ex\hbox {\scriptstyle +}} {\raise .1ex\hbox {\scriptscriptstyle +}} {\scriptscriptstyle +}}}=\{x\in B_{1}: x_{1}>0\} ,

*u*=0 on {*x*∈*B*_{1}:*x*_{1}=0}, \lambda^{{\mathchoice {\raise .17ex\hbox {\scriptstyle \pm }} {\raise .17ex\hbox {\scriptstyle \pm }} {\raise .1ex\hbox {\scriptscriptstyle \pm }} {\scriptscriptstyle \pm }}} are two positive constants and 0<*p*<1. In two dimensions, we prove that the free boundary is a uniform*C*^{1}graph up to the flat part of the fixed boundary and also that two-phase points cannot occur on this part of the fixed boundary. Here, the free boundary refers to the union of the boundaries of the sets {*x*:±*u*(*x*)>0}.##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-170218 (URN)10.1007/s11512-012-0179-3 (DOI)000332797200003 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_4_overlay_j_idt802",{id:"formSmash:items:resultList:22:j_idt627:4:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_4_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_4_overlay_j_idt808",{id:"formSmash:items:resultList:22:j_idt627:4:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_4_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_22_j_idt627_4_overlay_j_idt814",{id:"formSmash:items:resultList:22:j_idt627:4:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_22_j_idt627_4_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay508616",{id:"formSmash:items:resultList:22:j_idt627:4:j_idt631",widgetVar:"overlay508616",target:"formSmash:items:resultList:22:j_idt627:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 24. Bazarganzadeh, Mahmoudreza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt584",{id:"formSmash:items:resultList:23:j_idt584",widgetVar:"widget_formSmash_items_resultList_23_j_idt584",onLabel:"Bazarganzadeh, Mahmoudreza ",offLabel:"Bazarganzadeh, Mahmoudreza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Mathematics, Stockholm University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Some properties of one and twophase quadrature domains2010Licentiate thesis, monograph (Other academic)25. Bazarganzadeh, Mahmoudreza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt584",{id:"formSmash:items:resultList:24:j_idt584",widgetVar:"widget_formSmash_items_resultList_24_j_idt584",onLabel:"Bazarganzadeh, Mahmoudreza ",offLabel:"Bazarganzadeh, Mahmoudreza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt587",{id:"formSmash:items:resultList:24:j_idt587",widgetVar:"widget_formSmash_items_resultList_24_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lindgren, ErikPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tangential Touch between the Free and the Fixed Boundary in a Semilinear Free Boundary Problem in Two Dimensions2014In: Arkiv för matematik, ISSN 0004-2080, E-ISSN 1871-2487, Vol. 52, no 1, p. 21-42Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:24:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_24_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study minimizers of the functional where B_{1}^{{\mathchoice {\raise .17ex\hbox {\scriptstyle +}} {\raise .17ex\hbox {\scriptstyle +}} {\raise .1ex\hbox {\scriptscriptstyle +}} {\scriptscriptstyle +}}}=\{x\in B_{1}: x_{1}>0\} ,

*u*=0 on {*x*∈*B*_{1}:*x*_{1}=0}, \lambda^{{\mathchoice {\raise .17ex\hbox {\scriptstyle \pm }} {\raise .17ex\hbox {\scriptstyle \pm }} {\raise .1ex\hbox {\scriptscriptstyle \pm }} {\scriptscriptstyle \pm }}} are two positive constants and 0<*p*<1. In two dimensions, we prove that the free boundary is a uniform*C*^{1}graph up to the flat part of the fixed boundary and also that two-phase points cannot occur on this part of the fixed boundary. Here, the free boundary refers to the union of the boundaries of the sets {*x*:±*u*(*x*)>0}.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:24:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 26. Belova, Anna PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt584",{id:"formSmash:items:resultList:25:j_idt584",widgetVar:"widget_formSmash_items_resultList_25_j_idt584",onLabel:"Belova, Anna ",offLabel:"Belova, Anna ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt587",{id:"formSmash:items:resultList:25:j_idt587",widgetVar:"widget_formSmash_items_resultList_25_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hazard, PeterPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Quadratic irrationals, generating functions and Lévy constants.Manuscript (preprint) (Other academic)27. Bergström, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt584",{id:"formSmash:items:resultList:26:j_idt584",widgetVar:"widget_formSmash_items_resultList_26_j_idt584",onLabel:"Bergström, Jonas ",offLabel:"Bergström, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pricing American Options using Lévy Processes and Monte Carlo Simulations2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis28. Bergström, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt584",{id:"formSmash:items:resultList:27:j_idt584",widgetVar:"widget_formSmash_items_resultList_27_j_idt584",onLabel:"Bergström, Jonas ",offLabel:"Bergström, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pricing the American Option Using Itô’s Formula and Optimal Stopping Theory2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis29. Betancor, Jorge J. et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt587",{id:"formSmash:items:resultList:28:j_idt587",widgetVar:"widget_formSmash_items_resultList_28_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Castro, Alejandro J.Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.Farina, Juan C.Rodriguez-Mesa, L.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Solutions of Weinstein equations representable by Bessel Poisson integrals of BMO functions2015In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 431, no 1, p. 440-470Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:28:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_28_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider the Weinstein type equation L(lambda)u = 0 on (0, infinity) X (0, infinity), where L-lambda= delta(2)(t) + delta-lambda(lambda-1)/x(2), In this paper we characterize the solutions of L(lambda)u = = 0 on (0, infinity) x (0, infinity) representable by Bessel-Poisson integrals of BMO-functions as the ones satisfying certain Carleson properties.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:28:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 30. Bliatsios, George PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt584",{id:"formSmash:items:resultList:29:j_idt584",widgetVar:"widget_formSmash_items_resultList_29_j_idt584",onLabel:"Bliatsios, George ",offLabel:"Bliatsios, George ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Financial Modeling Under Incomplete Information2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis31. Braojos Peláes, Marta Rita PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt584",{id:"formSmash:items:resultList:30:j_idt584",widgetVar:"widget_formSmash_items_resultList_30_j_idt584",onLabel:"Braojos Peláes, Marta Rita ",offLabel:"Braojos Peláes, Marta Rita ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Optimal exercise of an American Option under drift uncertainty2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis32. Castro, Alejandro, J. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt584",{id:"formSmash:items:resultList:31:j_idt584",widgetVar:"widget_formSmash_items_resultList_31_j_idt584",onLabel:"Castro, Alejandro, J. ",offLabel:"Castro, Alejandro, J. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt587",{id:"formSmash:items:resultList:31:j_idt587",widgetVar:"widget_formSmash_items_resultList_31_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Rodríguez-López, SalvadorStaubach, WolfgangPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); L2 Solvability of the Dirichlet, Neumann and the regularity problems for parabolic equations with time-independent Hölder-continuous coefficientsIn: Transactions of the American Mathematical Society, ISSN 0002-9947, E-ISSN 1088-6850Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:31:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_31_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We establish the $L^2$-solvability of Dirichlet, Neumann and regularity problems for divergence-form heat (or diffusion) equations with time-independent H\"older-continuous diffusion coefficients, on bounded Lipschitz domains in $\mathbb{R}^n$. This is achieved through the demonstration of invertibility of the relevant layer-potentials which is in turn based on Fredholm theory and a systematic transference scheme which yields suitable parabolic Rellich-type estimates.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:31:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 33. Castro, Alejandro J. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt584",{id:"formSmash:items:resultList:32:j_idt584",widgetVar:"widget_formSmash_items_resultList_32_j_idt584",onLabel:"Castro, Alejandro J. ",offLabel:"Castro, Alejandro J. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt587",{id:"formSmash:items:resultList:32:j_idt587",widgetVar:"widget_formSmash_items_resultList_32_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Nazarbayev Univ, Dept Math, Astana 010000, Kazakhstan.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Strömqvist, MartinUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Homogenization of a parabolic Dirichlet problem by a method of Dahlberg2018In: Publicacions matemàtiques, ISSN 0214-1493, E-ISSN 2014-4350, Vol. 62, no 2, p. 439-473Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:32:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_32_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Consider the linear parabolic operator in divergence form: Hu := partial derivative(t)u (X, t) - div(A (X) del u (X, t)). We employ a method of Dahlberg to show that the Dirichlet problem for H in the upper half plane is well-posed for boundary data in L-p, for any elliptic matrix of coef-ficients A which is periodic and satisfies a Dini-type condition. This result allows us to treat a homogenization problem for the equation partial derivative(t)u(epsilon) (X, t) - div(A (X/epsilon) del u(epsilon) (X, t)) in Lipschitz domains with L-p-boundary data.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:32:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 34. Cribäck, Kevin PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt584",{id:"formSmash:items:resultList:33:j_idt584",widgetVar:"widget_formSmash_items_resultList_33_j_idt584",onLabel:"Cribäck, Kevin ",offLabel:"Cribäck, Kevin ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Micro payments: Viable technical platforms and models for a bankto provide payments on micro amounts2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis35. Dareiotis, Konstantinos PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt584",{id:"formSmash:items:resultList:34:j_idt584",widgetVar:"widget_formSmash_items_resultList_34_j_idt584",onLabel:"Dareiotis, Konstantinos ",offLabel:"Dareiotis, Konstantinos ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt587",{id:"formSmash:items:resultList:34:j_idt587",widgetVar:"widget_formSmash_items_resultList_34_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Gerencser, MateUniv Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Local L-infinity-estimates, weak Harnack inequality, and stochastic continuity of solutions of SPDEs2017In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 262, no 1, p. 615-632Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:34:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_34_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider stochastic partial differential equations under minimal assumptions: the coefficients are merely bounded and measurable and satisfy the stochastic parabolicity condition. In particular, the diffusion term is allowed to be scaling-critical. We derive local supremum estimates with a stochastic adaptation of De Giorgi's iteration and establish a weak Harnack inequality for the solutions. The latter is then used to obtain pointwise almost sure continuity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:34:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 36. Djindja, Domingos PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt584",{id:"formSmash:items:resultList:35:j_idt584",widgetVar:"widget_formSmash_items_resultList_35_j_idt584",onLabel:"Djindja, Domingos ",offLabel:"Djindja, Domingos ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Valuation of American put options with exercise restrictions2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis37. Dyrssen, Hannah PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt584",{id:"formSmash:items:resultList:36:j_idt584",widgetVar:"widget_formSmash_items_resultList_36_j_idt584",onLabel:"Dyrssen, Hannah ",offLabel:"Dyrssen, Hannah ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Option Pricing in Jump-to-Default Models2015Licentiate thesis, comprehensive summary (Other academic)38. Edlund, Tomas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt584",{id:"formSmash:items:resultList:37:j_idt584",widgetVar:"widget_formSmash_items_resultList_37_j_idt584",onLabel:"Edlund, Tomas ",offLabel:"Edlund, Tomas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pluripolar Sets and Pluripolar Hulls2005Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:37:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_37_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For many questions of complex analysis of several variables classical potential theory does not provide suitable tools and is replaced by pluripotential theory. The latter got many important applications within complex analysis and related fields. Pluripolar sets play a special role in pluripotential theory. These are the exceptional sets this theory. Complete pluripolar sets are especially important. In the thesis we study complete pluripolar sets and pluripolar hulls. We show that in some sense there are many complete pluripolar sets. We show that on each closed subset of the complex plane there is continuous function whose graph is complete pluripolar. On the other hand we study the propagation of pluripolar sets, equivalently we study pluripolar hulls. We relate the pluripolar hull of a graph to fine analytic continuation of the function. Fine analytic continuation of an analytic function over the unit disk is related to the fine topology introduced by Cartan and to the previously known notion of finely analytic functions. We show that fine analytic continuation implies non-triviality of the pluripolar hull. Concerning the inverse direction, we show that the projection of the pluripolar hull is finely open. The difficulty to judge from non-triviality of the pluripolar hull about fine analytic continuation lies in possible multi-sheetedness. If however the pluripolar hull contains the graph of a smooth extension of the function over a fine neighborhood of a boundary point we indeed obtain fine analytic continuation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:37:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt626",{id:"formSmash:items:resultList:37:j_idt626",widgetVar:"widget_formSmash_items_resultList_37_j_idt626",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. Complete pluripolar curves and graphsOpen this publication in new window or tab >>Complete pluripolar curves and graphs### Edlund, Tomas

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_0_overlay_some",{id:"formSmash:items:resultList:37:j_idt627:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_0_overlay_otherAuthors",{id:"formSmash:items:resultList:37:j_idt627:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_0_overlay_otherAuthors",multiple:true}); 2004 In: Annales Polonici Mathematici, ISSN 0066-2216, Vol. 84, no 1, p. 75-86Article in journal (Refereed) Published##### Identifiers

urn:nbn:se:uu:diva-93257 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_0_overlay_j_idt802",{id:"formSmash:items:resultList:37:j_idt627:0:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_0_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_0_overlay_j_idt808",{id:"formSmash:items:resultList:37:j_idt627:0:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_0_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_0_overlay_j_idt814",{id:"formSmash:items:resultList:37:j_idt627:0:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_0_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay166686",{id:"formSmash:items:resultList:37:j_idt627:0:j_idt631",widgetVar:"overlay166686",target:"formSmash:items:resultList:37:j_idt627:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. The pluripolar hull of a graph and fine analytic continuationOpen this publication in new window or tab >>The pluripolar hull of a graph and fine analytic continuation### Edlund, Tomas

### Juhl-Jöricke, Burglind

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_1_overlay_some",{id:"formSmash:items:resultList:37:j_idt627:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_1_overlay_otherAuthors",{id:"formSmash:items:resultList:37:j_idt627:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_1_overlay_otherAuthors",multiple:true}); 2006 (English)In: Arkiv för matematik, ISSN 0004-2080, E-ISSN 1871-2487, Vol. 44, no 1, p. 39-60Article in journal (Refereed) Published##### Abstract [en]

We show that if the graph of an analytic function in the unit disk D is not complete pluripolar in C-2 then the projection of its pluripolar hull contains a fine neighborhood of a point p is an element of partial derivative D. Moreover the projection of the pluripolar hull is always finely open. On the other hand we show that if an analytic function f in D extends to a function T which is defined on a fine neighborhood of a point p is an element of partial derivative D and is finely analytic at p then the pluripolar hull of the graph of f contains the graph of F over a smaller fine neighborhood of p. We give several examples of functions with this property of fine analytic continuation. As a corollary we obtain new classes of analytic functions in the disk which have non-trivial pluripolar hulls, among them C-infinity functions on the closed unit disk which are nowhere analytically extendible and have infinitely-sheeted pluripolar hulls. Previous examples of functions with non-trivial pluripolar hull of the graph have fine analytic continuation.

##### National Category

Mathematics##### Identifiers

urn:nbn:se:uu:diva-93258 (URN)10.1007/s11512-005-0004-3 (DOI)000240662300003 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_1_overlay_j_idt802",{id:"formSmash:items:resultList:37:j_idt627:1:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_1_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_1_overlay_j_idt808",{id:"formSmash:items:resultList:37:j_idt627:1:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_1_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_1_overlay_j_idt814",{id:"formSmash:items:resultList:37:j_idt627:1:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_1_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay166687",{id:"formSmash:items:resultList:37:j_idt627:1:j_idt631",widgetVar:"overlay166687",target:"formSmash:items:resultList:37:j_idt627:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. Pluripolar hulls of graphs and extension to fine neighborhoodsOpen this publication in new window or tab >>Pluripolar hulls of graphs and extension to fine neighborhoods### Edlund, Tomas

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_2_overlay_some",{id:"formSmash:items:resultList:37:j_idt627:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_2_overlay_otherAuthors",{id:"formSmash:items:resultList:37:j_idt627:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_2_overlay_otherAuthors",multiple:true}); Manuscript (Other academic)##### Identifiers

urn:nbn:se:uu:diva-93259 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_2_overlay_j_idt802",{id:"formSmash:items:resultList:37:j_idt627:2:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_2_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_2_overlay_j_idt808",{id:"formSmash:items:resultList:37:j_idt627:2:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_2_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_2_overlay_j_idt814",{id:"formSmash:items:resultList:37:j_idt627:2:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_2_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay166688",{id:"formSmash:items:resultList:37:j_idt627:2:j_idt631",widgetVar:"overlay166688",target:"formSmash:items:resultList:37:j_idt627:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. A note on the pluripolar hull of a graph and analytic structureOpen this publication in new window or tab >>A note on the pluripolar hull of a graph and analytic structure### Edlund, Tomas

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_3_overlay_some",{id:"formSmash:items:resultList:37:j_idt627:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_3_overlay_otherAuthors",{id:"formSmash:items:resultList:37:j_idt627:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_3_overlay_otherAuthors",multiple:true}); Manuscript (Other academic)##### Identifiers

urn:nbn:se:uu:diva-93260 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_3_overlay_j_idt802",{id:"formSmash:items:resultList:37:j_idt627:3:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_3_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_3_overlay_j_idt808",{id:"formSmash:items:resultList:37:j_idt627:3:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_3_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_37_j_idt627_3_overlay_j_idt814",{id:"formSmash:items:resultList:37:j_idt627:3:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_37_j_idt627_3_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay166689",{id:"formSmash:items:resultList:37:j_idt627:3:j_idt631",widgetVar:"overlay166689",target:"formSmash:items:resultList:37:j_idt627:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:37:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 39. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt584",{id:"formSmash:items:resultList:38:j_idt584",widgetVar:"widget_formSmash_items_resultList_38_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Complex Absorbing Potential Method: theory and implementation2011Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis40. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt584",{id:"formSmash:items:resultList:39:j_idt584",widgetVar:"widget_formSmash_items_resultList_39_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Effective equidistribution of horospheres in infinite-volume quotients of SO(n, 1) by geometrically finite groupsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:39:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_39_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We use the method of Burger to study the rate of equidistribution for translates of pieces of horospheres in Γ\ SO

_{0}(n, 1) for geometrically finite discrete subgroups Γ < SO_{0}(n, 1) with infinite covolume.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:39:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 41. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt584",{id:"formSmash:items:resultList:40:j_idt584",widgetVar:"widget_formSmash_items_resultList_40_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the equidistribution of translates of orbits of symmetric subgroups in Γ\GManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:40:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_40_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We use the method of Burger to study the rate of equidistribution for translates of orbits of symmetric subgroups in homogeneous spaces Γ\G for semisimple Lie groups G and lattices Γ.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:40:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 42. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt584",{id:"formSmash:items:resultList:41:j_idt584",widgetVar:"widget_formSmash_items_resultList_41_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the rate of equidistribution of expanding translates of horospheres in finite-volume quotients of SL(2,C)2017In: Journal of Modern Dynamics, ISSN 1930-5311, E-ISSN 1930-532X, Vol. 11, p. 155-188Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:41:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_41_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let Gamma be a lattice in G = SL(2, C). We give an effective equidistribution result with precise error terms for expanding translates of pieces of horospherical orbits in Gamma\G. Our method of proof relies on the theory of unitary representations.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:41:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 43. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt584",{id:"formSmash:items:resultList:42:j_idt584",widgetVar:"widget_formSmash_items_resultList_42_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the rate of equidistribution of expanding translates of horospheres in Γ\GManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:42:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_42_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let G be a semisimple Lie group and Γ a lattice in G. We generalize a method of Burger to prove precise effective equidistribution results for translates of pieces of horospheres in the homogeneous space Γ\G.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:42:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 44. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt584",{id:"formSmash:items:resultList:43:j_idt584",widgetVar:"widget_formSmash_items_resultList_43_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Renormalization of integrals of products of Eisenstein series and analytic continuation of representationsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:43:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_43_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We combine Zagier’s theory of renormalizable automorphic functions on the hyperbolic plane with the analytic continuation of representations of SL(2, R) due to Bernstein and Reznikov to study triple products of Eisenstein series of generic (in particular, non-arithmetic) non-compact finite-volume hyperbolic surfaces.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:43:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 45. Edwards, Samuel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_44_j_idt584",{id:"formSmash:items:resultList:44:j_idt584",widgetVar:"widget_formSmash_items_resultList_44_j_idt584",onLabel:"Edwards, Samuel ",offLabel:"Edwards, Samuel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The Rate of Mixing for Diagonal Flows on Spaces of Affine Lattices2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis46. Edwards, Samuel Charles PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt584",{id:"formSmash:items:resultList:45:j_idt584",widgetVar:"widget_formSmash_items_resultList_45_j_idt584",onLabel:"Edwards, Samuel Charles ",offLabel:"Edwards, Samuel Charles ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Some applications of representation theory in homogeneous dynamics and automorphic functions2018Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:45:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_45_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of an introduction and five papers in the general area of dynamics and functions on homogeneous spaces. A common feature is that representation theory plays a key role in all articles.

Papers I-IV are concerned with the effective equidistribution of translates of pieces of subgroup orbits in quotient spaces of semisimple Lie groups by discrete subgroups. In Paper I we focus on finite-volume quotients of SL(2,C) and study the speed of equdistribution for expanding translates orbits of horospherical subgroups. Paper II also studies the effective equidistribution of translates of horospherical orbits, though now in the setting of a quotient of a general semisimple Lie group by a lattice subgroup. Like Paper II, Paper III considers effective equidistribution in quotients of general semisimple Lie groups, but now studies translates of orbits of symmetric subgroups. In all these papers we show that the translates equidistribute with the same exponential rate as for the decay of the corresponding matrix coefficients of the translating subgroup. In Paper IV we consider the effective equidistribution of translates of pieces of horospheres in infinite-volume quotients of groups SO(n,1) by geometrically finite subgroups, and improve the dependency on the spectral gap for certain known effective equidistribution results.

In Paper V we study the Fourier coefficients of Eisenstein series for generic non-cocompact cofinite Fuchsian groups. We use Zagier's renormalization of certain divergent integrals to enable use of the so-called triple product method, and then combine this with the analytic continuation of irreducible representations of SL(2,R) due to Bernstein and Reznikov.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:45:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt626",{id:"formSmash:items:resultList:45:j_idt626",widgetVar:"widget_formSmash_items_resultList_45_j_idt626",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. On the rate of equidistribution of expanding translates of horospheres in finite-volume quotients of SL(2,C)Open this publication in new window or tab >>On the rate of equidistribution of expanding translates of horospheres in finite-volume quotients of SL(2,C)### Edwards, Samuel

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_0_overlay_some",{id:"formSmash:items:resultList:45:j_idt627:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_0_overlay_otherAuthors",{id:"formSmash:items:resultList:45:j_idt627:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_0_overlay_otherAuthors",multiple:true}); 2017 (English)In: Journal of Modern Dynamics, ISSN 1930-5311, E-ISSN 1930-532X, Vol. 11, p. 155-188Article in journal (Refereed) Published##### Abstract [en]

Let Gamma be a lattice in G = SL(2, C). We give an effective equidistribution result with precise error terms for expanding translates of pieces of horospherical orbits in Gamma\G. Our method of proof relies on the theory of unitary representations.

##### Keywords

Effective equidistribution, translates, horospheres##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-315688 (URN)10.3934/jmd.2017008 (DOI)000396538600008 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_0_overlay_j_idt802",{id:"formSmash:items:resultList:45:j_idt627:0:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_0_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_0_overlay_j_idt808",{id:"formSmash:items:resultList:45:j_idt627:0:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_0_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_0_overlay_j_idt814",{id:"formSmash:items:resultList:45:j_idt627:0:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_0_overlay_j_idt814",multiple:true}); ##### Funder

Swedish Research Council, 621-2011-3629Göran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of Technology Available from: 2017-02-18 Created: 2017-02-18 Last updated: 2018-04-11Bibliographically approved$(function(){PrimeFaces.cw("OverlayPanel","overlay1075368",{id:"formSmash:items:resultList:45:j_idt627:0:j_idt631",widgetVar:"overlay1075368",target:"formSmash:items:resultList:45:j_idt627:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. On the rate of equidistribution of expanding translates of horospheres in Γ\GOpen this publication in new window or tab >>On the rate of equidistribution of expanding translates of horospheres in Γ\G### Edwards, Samuel

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_1_overlay_some",{id:"formSmash:items:resultList:45:j_idt627:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_1_overlay_otherAuthors",{id:"formSmash:items:resultList:45:j_idt627:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_1_overlay_otherAuthors",multiple:true}); (English)Manuscript (preprint) (Other academic)##### Abstract [en]

Let G be a semisimple Lie group and Γ a lattice in G. We generalize a method of Burger to prove precise effective equidistribution results for translates of pieces of horospheres in the homogeneous space Γ\G.

##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-347856 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_1_overlay_j_idt802",{id:"formSmash:items:resultList:45:j_idt627:1:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_1_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_1_overlay_j_idt808",{id:"formSmash:items:resultList:45:j_idt627:1:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_1_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_1_overlay_j_idt814",{id:"formSmash:items:resultList:45:j_idt627:1:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_1_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay1196080",{id:"formSmash:items:resultList:45:j_idt627:1:j_idt631",widgetVar:"overlay1196080",target:"formSmash:items:resultList:45:j_idt627:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. On the equidistribution of translates of orbits of symmetric subgroups in Γ\GOpen this publication in new window or tab >>On the equidistribution of translates of orbits of symmetric subgroups in Γ\G### Edwards, Samuel

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_2_overlay_some",{id:"formSmash:items:resultList:45:j_idt627:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_2_overlay_otherAuthors",{id:"formSmash:items:resultList:45:j_idt627:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_2_overlay_otherAuthors",multiple:true}); (English)Manuscript (preprint) (Other academic)##### Abstract [en]

We use the method of Burger to study the rate of equidistribution for translates of orbits of symmetric subgroups in homogeneous spaces Γ\G for semisimple Lie groups G and lattices Γ.

##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-347857 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_2_overlay_j_idt802",{id:"formSmash:items:resultList:45:j_idt627:2:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_2_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_2_overlay_j_idt808",{id:"formSmash:items:resultList:45:j_idt627:2:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_2_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_2_overlay_j_idt814",{id:"formSmash:items:resultList:45:j_idt627:2:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_2_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay1196082",{id:"formSmash:items:resultList:45:j_idt627:2:j_idt631",widgetVar:"overlay1196082",target:"formSmash:items:resultList:45:j_idt627:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. Effective equidistribution of horospheres in infinite-volume quotients of SO(n, 1) by geometrically finite groupsOpen this publication in new window or tab >>Effective equidistribution of horospheres in infinite-volume quotients of SO(n, 1) by geometrically finite groups### Edwards, Samuel

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_3_overlay_some",{id:"formSmash:items:resultList:45:j_idt627:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_3_overlay_otherAuthors",{id:"formSmash:items:resultList:45:j_idt627:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_3_overlay_otherAuthors",multiple:true}); (English)Manuscript (preprint) (Other academic)##### Abstract [en]

We use the method of Burger to study the rate of equidistribution for translates of pieces of horospheres in Γ\ SO

_{0}(n, 1) for geometrically finite discrete subgroups Γ < SO_{0}(n, 1) with infinite covolume.##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-347858 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_3_overlay_j_idt802",{id:"formSmash:items:resultList:45:j_idt627:3:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_3_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_3_overlay_j_idt808",{id:"formSmash:items:resultList:45:j_idt627:3:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_3_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_3_overlay_j_idt814",{id:"formSmash:items:resultList:45:j_idt627:3:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_3_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay1196083",{id:"formSmash:items:resultList:45:j_idt627:3:j_idt631",widgetVar:"overlay1196083",target:"formSmash:items:resultList:45:j_idt627:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 5. Renormalization of integrals of products of Eisenstein series and analytic continuation of representationsOpen this publication in new window or tab >>Renormalization of integrals of products of Eisenstein series and analytic continuation of representations### Edwards, Samuel

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_4_overlay_some",{id:"formSmash:items:resultList:45:j_idt627:4:overlay:some",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_4_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_4_overlay_otherAuthors",{id:"formSmash:items:resultList:45:j_idt627:4:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_4_overlay_otherAuthors",multiple:true}); (English)Manuscript (preprint) (Other academic)##### Abstract [en]

We combine Zagier’s theory of renormalizable automorphic functions on the hyperbolic plane with the analytic continuation of representations of SL(2, R) due to Bernstein and Reznikov to study triple products of Eisenstein series of generic (in particular, non-arithmetic) non-compact finite-volume hyperbolic surfaces.

##### National Category

Mathematical Analysis##### Identifiers

urn:nbn:se:uu:diva-347859 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_4_overlay_j_idt802",{id:"formSmash:items:resultList:45:j_idt627:4:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_4_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_4_overlay_j_idt808",{id:"formSmash:items:resultList:45:j_idt627:4:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_4_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_45_j_idt627_4_overlay_j_idt814",{id:"formSmash:items:resultList:45:j_idt627:4:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_45_j_idt627_4_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay1196084",{id:"formSmash:items:resultList:45:j_idt627:4:j_idt631",widgetVar:"overlay1196084",target:"formSmash:items:resultList:45:j_idt627:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:45:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 47. Ekström, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt584",{id:"formSmash:items:resultList:46:j_idt584",widgetVar:"widget_formSmash_items_resultList_46_j_idt584",onLabel:"Ekström, Erik ",offLabel:"Ekström, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Selected Problems in Financial Mathematics2004Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:46:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_46_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis, consisting of six papers and a summary, studies the area of continuous time financial mathematics. A unifying theme for many of the problems studied is the implications of possible mis-specifications of models. Intimately connected with this question is, perhaps surprisingly, convexity properties of option prices. We also study qualitative behavior of different optimal stopping boundaries appearing in option pricing.

In Paper I a new condition on the contract function of an American option is provided under which the option price increases monotonically in the volatility. It is also shown that American option prices are continuous in the volatility.

In Paper II an explicit pricing formula for the perpetual American put option in the Constant Elasticity of Variance model is derived. Moreover, different properties of this price are studied.

Paper III deals with the Russian option with a finite time horizon. It is shown that the value of the Russian option solves a certain free boundary problem. This information is used to analyze the optimal stopping boundary.

A study of perpetual game options is performed in Paper IV. One of the main results provides a condition under which the value of the option is increasing in the volatility.

In Paper V options written on several underlying assets are considered. It is shown that, within a large class of models, the only model for the stock prices that assigns convex option prices to all convex contract functions is geometric Brownian motion.

Finally, in Paper VI it is shown that the optimal stopping boundary for the American put option is convex in the standard Black-Scholes model.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:46:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt626",{id:"formSmash:items:resultList:46:j_idt626",widgetVar:"widget_formSmash_items_resultList_46_j_idt626",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. Properties of American option pricesOpen this publication in new window or tab >>Properties of American option prices### Ekström, Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_0_overlay_some",{id:"formSmash:items:resultList:46:j_idt627:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_0_overlay_otherAuthors",{id:"formSmash:items:resultList:46:j_idt627:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_0_overlay_otherAuthors",multiple:true}); 2004 (English)In: Stochastic Processes and their Applications, ISSN 0304-4149, E-ISSN 1879-209X, Vol. 114, no 2, p. 265-278Article in journal (Refereed) Published##### Abstract [en]

We investigate some properties of American option prices in the setting of time- and level-dependent volatility. The properties under consideration are convexity in the underlying stock price, monotonicity and continuity in the volatility and time decay. Some properties are direct consequences of the corresponding properties of European option prices that are already known, and some follow by writing solutions of different stochastic differential equations as time changes of the same Brownian motion.

##### National Category

Natural Sciences##### Identifiers

urn:nbn:se:uu:diva-92190 (URN)10.1016/j.spa.2004.05.002 (DOI)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_0_overlay_j_idt802",{id:"formSmash:items:resultList:46:j_idt627:0:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_0_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_0_overlay_j_idt808",{id:"formSmash:items:resultList:46:j_idt627:0:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_0_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_0_overlay_j_idt814",{id:"formSmash:items:resultList:46:j_idt627:0:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_0_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay165175",{id:"formSmash:items:resultList:46:j_idt627:0:j_idt631",widgetVar:"overlay165175",target:"formSmash:items:resultList:46:j_idt627:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. The perpetual American put option in a level-dependent volatility modelOpen this publication in new window or tab >>The perpetual American put option in a level-dependent volatility model### Ekström, Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_1_overlay_some",{id:"formSmash:items:resultList:46:j_idt627:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_1_overlay_otherAuthors",{id:"formSmash:items:resultList:46:j_idt627:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_1_overlay_otherAuthors",multiple:true}); 2003 In: Journal of Applied Probability, ISSN 0021-9002, Vol. 40, no 3, p. 783-789Article in journal (Refereed) Published##### Identifiers

urn:nbn:se:uu:diva-92191 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_1_overlay_j_idt802",{id:"formSmash:items:resultList:46:j_idt627:1:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_1_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_1_overlay_j_idt808",{id:"formSmash:items:resultList:46:j_idt627:1:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_1_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_1_overlay_j_idt814",{id:"formSmash:items:resultList:46:j_idt627:1:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_1_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay165176",{id:"formSmash:items:resultList:46:j_idt627:1:j_idt631",widgetVar:"overlay165176",target:"formSmash:items:resultList:46:j_idt627:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. Russian options with a finite time horizonOpen this publication in new window or tab >>Russian options with a finite time horizon### Ekström, Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_2_overlay_some",{id:"formSmash:items:resultList:46:j_idt627:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_2_overlay_otherAuthors",{id:"formSmash:items:resultList:46:j_idt627:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_2_overlay_otherAuthors",multiple:true}); 2004 In: Journal of Applied Probability, ISSN 0021-9002, Vol. 41, no 2, p. 313-326Article in journal (Refereed) Published##### Identifiers

urn:nbn:se:uu:diva-92192 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_2_overlay_j_idt802",{id:"formSmash:items:resultList:46:j_idt627:2:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_2_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_2_overlay_j_idt808",{id:"formSmash:items:resultList:46:j_idt627:2:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_2_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_2_overlay_j_idt814",{id:"formSmash:items:resultList:46:j_idt627:2:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_2_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay165177",{id:"formSmash:items:resultList:46:j_idt627:2:j_idt631",widgetVar:"overlay165177",target:"formSmash:items:resultList:46:j_idt627:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. Properties of game optionsOpen this publication in new window or tab >>Properties of game options### Ekström, Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_3_overlay_some",{id:"formSmash:items:resultList:46:j_idt627:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_3_overlay_otherAuthors",{id:"formSmash:items:resultList:46:j_idt627:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_3_overlay_otherAuthors",multiple:true}); Article in journal (Refereed) Submitted##### Identifiers

urn:nbn:se:uu:diva-92193 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_3_overlay_j_idt802",{id:"formSmash:items:resultList:46:j_idt627:3:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_3_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_3_overlay_j_idt808",{id:"formSmash:items:resultList:46:j_idt627:3:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_3_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_3_overlay_j_idt814",{id:"formSmash:items:resultList:46:j_idt627:3:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_3_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay165178",{id:"formSmash:items:resultList:46:j_idt627:3:j_idt631",widgetVar:"overlay165178",target:"formSmash:items:resultList:46:j_idt627:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 5. Superreplication of options on several underlying assetsOpen this publication in new window or tab >>Superreplication of options on several underlying assets### Ekström, Erik

### Janson, Svante

### Tysk, Johan

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_4_overlay_some",{id:"formSmash:items:resultList:46:j_idt627:4:overlay:some",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_4_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_4_overlay_otherAuthors",{id:"formSmash:items:resultList:46:j_idt627:4:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_4_overlay_otherAuthors",multiple:true}); 2005 (English)In: Journal of Applied Probability, ISSN 0021-9002, E-ISSN 1475-6072, Vol. 42, no 1, p. 27-38Article in journal (Refereed) Published##### National Category

Natural Sciences##### Identifiers

urn:nbn:se:uu:diva-92194 (URN)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_4_overlay_j_idt802",{id:"formSmash:items:resultList:46:j_idt627:4:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_4_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_4_overlay_j_idt808",{id:"formSmash:items:resultList:46:j_idt627:4:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_4_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_4_overlay_j_idt814",{id:"formSmash:items:resultList:46:j_idt627:4:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_4_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay165179",{id:"formSmash:items:resultList:46:j_idt627:4:j_idt631",widgetVar:"overlay165179",target:"formSmash:items:resultList:46:j_idt627:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 6. Convexity of the optimal stopping boundary for the American put optionOpen this publication in new window or tab >>Convexity of the optimal stopping boundary for the American put option### Ekström, Erik

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_5_overlay_some",{id:"formSmash:items:resultList:46:j_idt627:5:overlay:some",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_5_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_5_overlay_otherAuthors",{id:"formSmash:items:resultList:46:j_idt627:5:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_5_overlay_otherAuthors",multiple:true}); 2004 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 299, no 1, p. 147-156Article in journal (Refereed) Published##### Abstract [en]

We show that the optimal stopping boundary for the American put option is convex in the standard Black–Scholes model. The methods are adapted from ice-melting problems and rely upon studying the behavior of level curves of solutions to certain parabolic differential equations.

##### National Category

Natural Sciences##### Identifiers

urn:nbn:se:uu:diva-92195 (URN)10.1016/j.jmaa.2004.06.018 (DOI)PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_5_overlay_j_idt802",{id:"formSmash:items:resultList:46:j_idt627:5:overlay:j_idt802",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_5_overlay_j_idt802",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_5_overlay_j_idt808",{id:"formSmash:items:resultList:46:j_idt627:5:overlay:j_idt808",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_5_overlay_j_idt808",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_46_j_idt627_5_overlay_j_idt814",{id:"formSmash:items:resultList:46:j_idt627:5:overlay:j_idt814",widgetVar:"widget_formSmash_items_resultList_46_j_idt627_5_overlay_j_idt814",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay165180",{id:"formSmash:items:resultList:46:j_idt627:5:j_idt631",widgetVar:"overlay165180",target:"formSmash:items:resultList:46:j_idt627:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:46:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 48. Ekström, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt584",{id:"formSmash:items:resultList:47:j_idt584",widgetVar:"widget_formSmash_items_resultList_47_j_idt584",onLabel:"Ekström, Erik ",offLabel:"Ekström, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt587",{id:"formSmash:items:resultList:47:j_idt587",widgetVar:"widget_formSmash_items_resultList_47_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tysk, JohanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The Black-Scholes equation in stochastic volatility models2010In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 368, no 2, p. 498-507Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt622_0_j_idt623",{id:"formSmash:items:resultList:47:j_idt622:0:j_idt623",widgetVar:"widget_formSmash_items_resultList_47_j_idt622_0_j_idt623",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the Black-Scholes equation in stochastic volatility models. In particular, we show that the option price is the unique classical solution to a parabolic differential equation with a certain boundary behaviour for vanishing values of the volatility. If the boundary is attainable, then this boundary behaviour serves as a boundary condition and guarantees uniqueness in appropriate function spaces. On the other hand, if the boundary is non-attainable, then the boundary behaviour is not needed to guarantee uniqueness, but is nevertheless very useful for instance from a numerical perspective.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:47:j_idt622:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 49. Enstedt, Mattias PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt584",{id:"formSmash:items:resultList:48:j_idt584",widgetVar:"widget_formSmash_items_resultList_48_j_idt584",onLabel:"Enstedt, Mattias ",offLabel:"Enstedt, Mattias ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the existence and non-existence of a solution to the Hartree-Fock equations with an external magnetic field2007Licentiate thesis, monograph (Other academic)50. Enstedt, Mattias PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt584",{id:"formSmash:items:resultList:49:j_idt584",widgetVar:"widget_formSmash_items_resultList_49_j_idt584",onLabel:"Enstedt, Mattias ",offLabel:"Enstedt, Mattias ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt587",{id:"formSmash:items:resultList:49:j_idt587",widgetVar:"widget_formSmash_items_resultList_49_j_idt587",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Melgaard, MichaelUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Existence of infinitely many distinct solutions to the quasi-relativistic Hartree-Fock equations2009Report (Other academic)

CiteExportLink to result list
http://uu.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22categoryId%22%3A%2211502%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt902_recordPermLink",{id:"formSmash:lower:j_idt902:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt902_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt902_j_idt904",{id:"formSmash:lower:j_idt902:j_idt904",widgetVar:"widget_formSmash_lower_j_idt902_j_idt904",target:"formSmash:lower:j_idt902:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt920",{id:"formSmash:lower:j_idt920",widgetVar:"widget_formSmash_lower_j_idt920",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt920",e:"change",f:"formSmash",p:"formSmash:lower:j_idt920",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt931",{id:"formSmash:lower:j_idt931",widgetVar:"widget_formSmash_lower_j_idt931",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt931",e:"change",f:"formSmash",p:"formSmash:lower:j_idt931",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt941",{id:"formSmash:lower:j_idt941",widgetVar:"widget_formSmash_lower_j_idt941"});});

- html
- text
- asciidoc
- rtf