Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 905
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abid, Abdul Rahman
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    X-ray Absorption and Fragmentationas Initial Steps of Radiation Damage in Free Organic Molecules and Nanoparticles2021Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Understanding the molecular radiation damage is crucial in radiobiology, molecular physics, and atmospheric science. In this thesis, the initial steps of radiation damage of anhydrous gas-phase molecules and hydrated nanoparticles were studied using synchrotron radiation based electron-ion coincidence spectroscopy and X-ray absorption spectroscopy under vacuum conditions. Electron - ion coincidence spectroscopy was used to study the photofragmentation and molecular dynamics of the isolated gas-phase molecules. In addition to the photofragmentation of the gas-phase molecules, the effect of the initial ionization site, initial molecular geometry, and the intramolecular chemical environment has been studied. In avobenzone, core ionization leads to massive fragmentation, with a slight site-selectivity concerning fragment production. In ortho-aminobenzoic acid, core ionization leads to the production of a hydronium ion, indicating that the importance of functional group's position for double intramolecular hydrogen transfer. X-ray absorption spectroscopy was used to probe hydrated nanoparticles prepared at different relative humidities. In hydrated inorganic and mixed inorganic-organic nanoparticles, water is present in a liquid-like state. With different ranges of relative humidity, the primary hydration layers of the hydrated nanoparticles stays the same. In mixed nanoparticles, there is evidence for interaction between the included organic biomolecule with the inorganic and/or water molecules.   

    Delarbeten
    1. The effect of relative humidity on CaCl2 nanoparticles studied by soft X-ray absorption spectroscopy
    Öppna denna publikation i ny flik eller fönster >>The effect of relative humidity on CaCl2 nanoparticles studied by soft X-ray absorption spectroscopy
    Visa övriga...
    2021 (Engelska)Ingår i: RSC Advances, E-ISSN 2046-2069, Vol. 11, nr 4, s. 2103-2111Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Ca- and Cl-containing nanoparticles are common in atmosphere, originating for example from desert dust and sea water. The properties and effects on atmospheric processes of these aerosol particles depend onthe relative humidity (RH) as they are often both hygroscopic and deliquescent. We present here a study of surface structure of free-flying CaCl2 nanoparticles (CaCl2-NPs) in the 100 nm size regime prepared at different humidity levels (RH: 11–85%). We also created mixed nanoparticles by aerosolizing a solution ofCaCl2 and phenylalanine (Phe), which is a hydrophobic amino acid present in atmosphere. Information of hydration state of CaCl2-NPs and production of mixed CaCl2 + Phe nanoparticles was obtained using soft X-ray absorption spectroscopy (XAS) at Ca 2p, Cl 2p, C 1s, and O 1s edges. We also report Ca 2p andCl 2p X-ray absorption spectra of an aqueous CaCl2 solution. The O 1s X-ray absorption spectra measured from hydrated CaCl2-NPs resemble liquid-like water spectrum, which is heavily influenced by the presence of ions. Core level spectra of Ca2+ and Cl- ions do not show a clear dependence of % RH, indicating that the first coordination shell remains similar in all measured hydrated CaCl2-NPs, but they differ from aqueous solution and solid CaCl2.

    Ort, förlag, år, upplaga, sidor
    Royal Society of Chemistry, 2021
    Nationell ämneskategori
    Atom- och molekylfysik och optik
    Forskningsämne
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-435531 (URN)10.1039/d0ra08943e (DOI)000609773700022 ()
    Forskningsfinansiär
    EU, Horisont 2020, 713606Finlands AkademiVetenskapsrådet, VR 2017-04162
    Tillgänglig från: 2021-02-25 Skapad: 2021-02-25 Senast uppdaterad: 2024-01-15Bibliografiskt granskad
    2. Electron-ion coincidence spectroscopy of a large organic molecule: photofragmentation of avobenzone after valence and core ionisation
    Öppna denna publikation i ny flik eller fönster >>Electron-ion coincidence spectroscopy of a large organic molecule: photofragmentation of avobenzone after valence and core ionisation
    Visa övriga...
    2020 (Engelska)Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 53, nr 24, artikel-id 244001Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The Avobenzone (AVOB) molecule is very photoactive and undergoes irreversible degradation upon irradiation. We studied its valence and core-level (C1s and O1s) photoionisation and subsequent photofragmentation with photoelectron spectroscopy and photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. AVOB is one of the largest molecules studied with this technique. The results show that the AVOB molecule dissociates into an extensive range of fragments by different pathways with little element or site-selectivity. The coincident maps were used to determine selected fragment separation sequences by analysing the slopes of patterns from ion pairs after the core ionisation. Charge delocalisation over the benzene rings and their relative stability favor fragmentation by cleavage of the bridge between them.

    Nyckelord
    PEPIPICO, photofragmentation, time-of-flight mass spectrometry, radiation damage, electron spectroscopy, avobenzone
    Nationell ämneskategori
    Atom- och molekylfysik och optik
    Identifikatorer
    urn:nbn:se:uu:diva-428313 (URN)10.1088/1361-6455/abc228 (DOI)000590714400001 ()
    Forskningsfinansiär
    EU, Horisont 2020, 730872Vetenskapsrådet, VR 2017-04162Vetenskapsrådet, 2018-07152Vinnova, 2018-04969Forskningsrådet Formas, 2019-02496
    Tillgänglig från: 2020-12-14 Skapad: 2020-12-16 Senast uppdaterad: 2024-05-16Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (jpg)
    presentationsbild
  • 2.
    Abid, Abdul Rahman
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland..
    Pelimanni, Eetu
    Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland..
    Reinhardt, Maximilian
    Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland..
    Boudjemia, Nacer
    Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland..
    Kivimaki, Antti
    Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland.;Lund Univ, Max Lab 4, Lund, Sweden..
    Huttula, Marko
    Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland..
    Björneholm, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Patanen, Minna
    Univ Oulu, Nano & Mol Syst Res Unit, Oulu, Finland..
    Electron-ion coincidence spectroscopy of a large organic molecule: photofragmentation of avobenzone after valence and core ionisation2020Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 53, nr 24, artikel-id 244001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Avobenzone (AVOB) molecule is very photoactive and undergoes irreversible degradation upon irradiation. We studied its valence and core-level (C1s and O1s) photoionisation and subsequent photofragmentation with photoelectron spectroscopy and photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy. AVOB is one of the largest molecules studied with this technique. The results show that the AVOB molecule dissociates into an extensive range of fragments by different pathways with little element or site-selectivity. The coincident maps were used to determine selected fragment separation sequences by analysing the slopes of patterns from ion pairs after the core ionisation. Charge delocalisation over the benzene rings and their relative stability favor fragmentation by cleavage of the bridge between them.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Abid, Abdul Rahman
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik. Univ Oulu, Nano & Mol Syst Res Unit, Fac Sci, POB 3000, Oulu 90570, Finland.
    Reinhardt, Maximilian
    Boudjemia, Nacer
    Pelimanni, Eetu
    Milosavljevic, Aleksandar R.
    Saak, Clara-Magdalena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik.
    Huttula, Marko
    Björneholm, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik.
    Patanen, Minna
    The effect of relative humidity on CaCl2 nanoparticles studied by soft X-ray absorption spectroscopy2021Ingår i: RSC Advances, E-ISSN 2046-2069, Vol. 11, nr 4, s. 2103-2111Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ca- and Cl-containing nanoparticles are common in atmosphere, originating for example from desert dust and sea water. The properties and effects on atmospheric processes of these aerosol particles depend onthe relative humidity (RH) as they are often both hygroscopic and deliquescent. We present here a study of surface structure of free-flying CaCl2 nanoparticles (CaCl2-NPs) in the 100 nm size regime prepared at different humidity levels (RH: 11–85%). We also created mixed nanoparticles by aerosolizing a solution ofCaCl2 and phenylalanine (Phe), which is a hydrophobic amino acid present in atmosphere. Information of hydration state of CaCl2-NPs and production of mixed CaCl2 + Phe nanoparticles was obtained using soft X-ray absorption spectroscopy (XAS) at Ca 2p, Cl 2p, C 1s, and O 1s edges. We also report Ca 2p andCl 2p X-ray absorption spectra of an aqueous CaCl2 solution. The O 1s X-ray absorption spectra measured from hydrated CaCl2-NPs resemble liquid-like water spectrum, which is heavily influenced by the presence of ions. Core level spectra of Ca2+ and Cl- ions do not show a clear dependence of % RH, indicating that the first coordination shell remains similar in all measured hydrated CaCl2-NPs, but they differ from aqueous solution and solid CaCl2.

    Ladda ner fulltext (pdf)
    fulltext
  • 4. Ablikim, M.
    et al.
    Achasov, M. N.
    Ai, X. C.
    Albayrak, O.
    Albrecht, M.
    Ambrose, D. J.
    Amoroso, A.
    An, F. F.
    An, Q.
    Bai, J. Z.
    Ferroli, R. Baldini
    Ban, Y.
    Bennett, D. W.
    Bennett, J. V.
    Bertani, M.
    Bettoni, D.
    Bian, J. M.
    Bianchi, F.
    Boger, E.
    Bondarenko, O.
    Boyko, I.
    Briere, R. A.
    Cai, H.
    Cai, X.
    Cakir, O.
    Calcaterra, A.
    Cao, G. F.
    Cetin, S. A.
    Chang, J. F.
    Chelkov, G.
    Chen, G.
    Chen, H. S.
    Chen, H. Y.
    Chen, J. C.
    Chen, M. L.
    Chen, S. J.
    Chen, X.
    Chen, X. R.
    Chen, Y. B.
    Cheng, H. P.
    Chu, X. K.
    Cibinetto, G.
    Cronin-Hennessy, D.
    Dai, H. L.
    Dai, J. P.
    Dbeyssi, A.
    Dedovich, D.
    Deng, Z. Y.
    Denig, A.
    Denysenko, I.
    Destefanis, M.
    De Mori, F.
    Ding, Y.
    Dong, C.
    Dong, J.
    Dong, L. Y.
    Dong, M. Y.
    Du, S. X.
    Duan, P. F.
    Fan, J. Z.
    Fang, J.
    Fang, S. S.
    Fang, X.
    Fang, Y.
    Fava, L.
    Feldbauer, F.
    Felici, G.
    Feng, C. Q.
    Fioravanti, E.
    Fritschm, M.
    Fu, C. D.
    Gao, Q.
    Gao, Y.
    Gao, Z.
    Garzia, I.
    Goetzen, K.
    Gong, W. X.
    Gradl, W.
    Greco, M.
    Gu, M. H.
    Gu, Y. T.
    Guan, Y. H.
    Guo, A. Q.
    Guo, L. B.
    Guo, T.
    Guo, Y.
    Guo, Y. P.
    Haddadi, Z.
    Hafner, A.
    Han, S.
    Han, Y. L.
    Harris, F. A.
    He, K. L.
    He, Z. Y.
    Held, T.
    Heng, Y. K.
    Hou, Z. L.
    Hu, C.
    Hu, H. M.
    Hu, J. F.
    Hu, T.
    Hu, Y.
    Huang, G. M.
    Huang, G. S.
    Huang, H. P.
    Huang, J. S.
    Huang, X. T.
    Huang, Y.
    Hussain, T.
    Ji, Q.
    Ji, Q. P.
    Ji, X. B.
    Ji, X. L.
    Jiang, L. L.
    Jiang, L. W.
    Jiang, X. S.
    Jiao, J. B.
    Jiao, Z.
    Jin, D. P.
    Jin, S.
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Julin, A.
    Kalantar-Nayestanaki, N.
    Kang, X. L.
    Kang, X. S.
    Kavatsyuk, M.
    Ke, B. C.
    Kliemt, R.
    Kloss, B.
    Kolcu, O. B.
    Kopf, B.
    Kornicer, M.
    Kuehn, W.
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Lai, W.
    Lange, J. S.
    Lara, M.
    Larin, P.
    Li, C. H.
    Li, Cheng
    Li, D. M.
    Li, F.
    Li, G.
    Li, H. B.
    Li, J. C.
    Li, Jin
    Li, K.
    Li, P. R.
    Li, T.
    Li, W. D.
    Li, W. G.
    Li, X. L.
    Li, X. M.
    Li, X. N.
    Li, X. Q.
    Li, Z. B.
    Liang, H.
    Liang, Y. F.
    Liang, Y. T.
    Liao, G. R.
    Lin, D. X.
    Liu, B. J.
    Liu, C. X.
    Liu, F. H.
    Liu, Fang
    Liu, Feng
    Liu, H. B.
    Liu, H. H.
    Liu, H. M.
    Liu, J.
    Liu, J. P.
    Liu, J. Y.
    Liu, K.
    Liu, K. Y.
    Liu, L. D.
    Liu, P. L.
    Liu, Q.
    Liu, S. B.
    Liu, X.
    Liu, X. X.
    Liu, Y. B.
    Liu, Z. A.
    Liu, Zhiqiang
    Liu, Zhiqing
    Loehner, H.
    Lou, X. C.
    Lu, H. J.
    Lu, J. G.
    Lu, R. Q.
    Lu, Y.
    Lu, Y. P.
    Luo, C. L.
    Luo, M. X.
    Luo, T.
    Luo, X. L.
    Lv, M.
    Lyu, X. R.
    Ma, F. C.
    Ma, H. L.
    Ma, L. L.
    Ma, Q. M.
    Ma, S.
    Ma, T.
    Ma, X. N.
    Ma, X. Y.
    Maas, F. E.
    Maggiora, M.
    Malik, Q. A.
    Mao, Y. J.
    Mao, Z. P.
    Marcello, S.
    Messchendorp, J. G.
    Min, J.
    Min, T. J.
    Mitchell, R. E.
    Mo, X. H.
    Mo, Y. J.
    Morales, C. Morales
    Moriya, K.
    Muchnoi, N. Yu.
    Muramatsu, H.
    Nefedov, Y.
    Nerling, F.
    Nikolaev, I. B.
    Ning, Z.
    Nisar, S.
    Niu, S. L.
    Niu, X. Y.
    Olsen, S. L.
    Ouyang, Q.
    Pacetti, S.
    Patteri, P.
    Pelizaeus, M.
    Peng, H. P.
    Peters, K.
    Ping, J. L.
    Ping, R. G.
    Poling, R.
    Pu, Y. N.
    Qi, M.
    Qian, S.
    Qiao, C. F.
    Qin, L. Q.
    Qin, N.
    Qin, X. S.
    Qin, Y.
    Qin, Z. H.
    Qiu, J. F.
    Rashid, K. H.
    Redmer, C. F.
    Ren, H. L.
    Ripka, M.
    Rong, G.
    Ruan, X. D.
    Santoro, V.
    Sarantsev, A.
    Savrie, M.
    Schönning, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Schumann, S.
    Shan, W.
    Shao, M.
    Shen, C. P.
    Shen, P. X.
    Shen, X. Y.
    Sheng, H. Y.
    Shepherd, M. R.
    Song, W. M.
    Song, X. Y.
    Sosio, S.
    Spataro, S.
    Spruck, B.
    Sun, X.
    Sun, J. F.
    Sun, S. S.
    Sun, Y. J.
    Sun, Y. Z.
    Sun, Z. J.
    Sun, Z. T.
    Tang, C. J.
    Tang, X.
    Tapan, I.
    Thorndike, E. H.
    Tiemens, M.
    Toth, D.
    Ullrich, M.
    Uman, I.
    Varner, G. S.
    Wang, B.
    Wang, B. L.
    Wang, D.
    Wang, D. Y.
    Wang, K.
    Wang, L. L.
    Wang, L. S.
    Wang, M.
    Wang, P.
    Wang, P. L.
    Wang, Q. J.
    Wang, S. G.
    Wang, W.
    Wang, X. F.
    Wang, Y. D.
    Wang, Y. F.
    Wang, Y. Q.
    Wang, Z.
    Wang, Z. G.
    Wang, Z. H.
    Wang, Z. Y.
    Weber, T.
    Wei, D. H.
    Wei, J. B.
    Weidenkaff, P.
    Wen, S. P.
    Wiedner, U.
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Wu, L. H.
    Wu, Z.
    Xia, L. G.
    Xia, Y.
    Xiao, D.
    Xiao, Z. J.
    Xie, Y. G.
    Xu, G. F.
    Xu, L.
    Xu, Q. J.
    Xu, Q. N.
    Xu, X. P.
    Yan, L.
    Yan, W. B.
    Yan, W. C.
    Yan, Y. H.
    Yang, H. X.
    Yang, L.
    Yang, Y.
    Yang, Y. X.
    Ye, H.
    Ye, M.
    Ye, M. H.
    Yin, J. H.
    Yu, B. X.
    Yu, C. X.
    Yu, H. W.
    Yu, J. S.
    Yuan, C. Z.
    Yuan, W. L.
    Yuan, Y.
    Yuncu, A.
    Zafar, A. A.
    Zallo, A.
    Zeng, Y.
    Zhang, B. X.
    Zhang, B. Y.
    Zhang, C.
    Zhang, C. C.
    Zhang, D. H.
    Zhang, H. H.
    Zhang, H. Y.
    Zhang, J. J.
    Zhang, J. L.
    Zhang, J. Q.
    Zhang, J. W.
    Zhang, J. Y.
    Zhang, J. Z.
    Zhang, K.
    Zhang, L.
    Zhang, S. H.
    Zhang, X. Y.
    Zhang, Y.
    Zhang, Y. H.
    Zhang, Y. T.
    Zhang, Z. H.
    Zhang, Z. P.
    Zhang, Z. Y.
    Zhao, G.
    Zhao, J. W.
    Zhao, J. Y.
    Zhao, J. Z.
    Zhao, Lei
    Zhao, Ling
    Zhao, M. G.
    Zhao, Q.
    Zhao, Q. W.
    Zhao, S. J.
    Zhao, T. C.
    Zhao, Y. B.
    Zhao, Z. G.
    Zhemchugov, A.
    Zheng, B.
    Zheng, J. P.
    Zheng, W. J.
    Zheng, Y. H.
    Zhong, B.
    Zhou, L.
    Zhou, Li
    Zhou, X.
    Zhou, X. K.
    Zhou, X. R.
    Zhou, X. Y.
    Zhu, K.
    Zhu, K. J.
    Zhu, S.
    Zhu, X. L.
    Zhu, Y. C.
    Zhu, Y. S.
    Zhu, Z. A.
    Zhuang, J.
    Zou, B. S.
    Zou, J. H.
    Measurement of y(CP) in D-0-(D)over-bar(0) oscillation using quantum correlations in e(+)e(-) -> D-0(D)over-bar(0) at root s=3.773 GeV2015Ingår i: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 744, s. 339-346Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a measurement of the parameter y(CP) in D-0-(D) over bar (0) oscillations performed by taking advantage of quantum coherence between pairs of D-0(D) over bar (0) mesons produced in e(+)e(-) annihilations near threshold. In this work, doubly-tagged D-0(D) over bar (0) events, where one D decays to a CP eigenstate and the other D decays in a semileptonic mode, are reconstructed using a data sample of 2.92 fb(-1) collected with the BESIII detector at the center-of-mass energy of root s = 3.773 GeV. We obtain y(CP) = (-2.0 +/- 1.3 +/- 0.7)%, where the first uncertainty is statistical and the second is systematic. This result is compatible with the current world average.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Ablikim, M.
    et al.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Achasov, M. N.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Novosibirsk State Univ, Novosibirsk 630090, Russia..
    Ai, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Albayrak, O.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Albrecht, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Ambrose, D. J.
    Univ Rochester, Rochester, NY 14627 USA..
    Amoroso, A.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    An, F. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    An, Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Bai, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ferroli, R. Baldini
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Ban, Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Bennett, D. W.
    Indiana Univ, Bloomington, IN 47405 USA..
    Bennett, J. V.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Bertani, M.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Bettoni, D.
    Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy..
    Bian, J. M.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Bianchi, F.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Boger, E.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Moscow Inst Phys & Technol, Moscow 141700, Russia..
    Boyko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Briere, R. A.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Cai, H.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Cai, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Cakir, O.
    Istanbul Aydin Univ, TR-34295 Istanbul, Turkey.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China.;Ankara Univ, TR-06100 Ankara, Turkey..
    Calcaterra, A.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Cao, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cetin, S. A.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey.;Ankara Univ, TR-06100 Ankara, Turkey..
    Chang, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Chelkov, G.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Moscow Inst Phys & Technol, Moscow 141700, Russia.;Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia..
    Chen, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Chen, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, M. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Chen, S.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Chen, S. J.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Chen, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Chen, X. R.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Chen, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Cheng, H. P.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Chu, X. K.
    Peking Univ, Beijing 100871, Peoples R China..
    Cibinetto, G.
    Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy..
    Dai, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Dai, J. P.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Dbeyssi, A.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Dedovich, D.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Deng, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Denig, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Denysenko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Destefanis, M.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    De Mori, F.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Ding, Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Dong, C.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Dong, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Dong, L. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dong, M. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Du, S. X.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Duan, P. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fan, J. Z.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Fang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Fang, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fang, X.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Fang, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fava, L.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Feldbauer, F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Felici, G.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Feng, C. Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Fioravanti, E.
    Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy..
    Fritsch, M.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Fu, C. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;GSI Helmholtzctr Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Gao, X. L.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Gao, X. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Gao, Y.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Gao, Z.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Garzia, I.
    Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy..
    Goetzen, K.
    GSI Helmholtzctr Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Gong, W. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Gradl, W.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Greco, M.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Gu, M. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Gu, Y. T.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Guan, Y. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, A. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, L. B.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Guo, R. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y. P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Haddadi, Z.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Hafner, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Han, S.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Hao, X. Q.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Harris, F. A.
    Univ Hawaii, Honolulu, HI 96822 USA..
    He, K. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Held, T.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Heng, Y. K.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Hou, Z. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, C.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Hu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, J. F.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Hu, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Hu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Huang, G. M.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Huang, G. S.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Huang, J. S.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Huang, X. T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Huang, Y.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Hussain, T.
    Univ Punjab, Lahore 54590, Pakistan..
    Ji, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, Q. P.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Ji, X. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Jiang, L. W.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Jiang, X. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Jiang, X. Y.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Jiao, J. B.
    Shandong Univ, Jinan 250100, Peoples R China..
    Jiao, Z.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Jin, D. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Jin, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Julin, A.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Kalantar-Nayestanaki, N.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Kang, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Kang, X. S.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Kavatsyuk, M.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Ke, B. C.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Kiese, P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Kliemt, R.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Kloss, B.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Kolcu, O. B.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey.;Ankara Univ, TR-06100 Ankara, Turkey.;Istanbul Arel Univ, TR-34295 Istanbul, Turkey..
    Kopf, B.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Kornicer, M.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Kuehn, W.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Lange, J. S.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Lara, M.
    Indiana Univ, Bloomington, IN 47405 USA..
    Larin, P.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Leng, C.
    Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Li, Cui
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Li, Cheng
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Li, D. M.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Li, F.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Li, F. Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Li, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, H. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, H. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, Jin
    Seoul Natl Univ, Seoul 151747, South Korea..
    Li, K.
    Hangzhou Normal Univ, Hangzhou 310036, Zhejiang, Peoples R China.;Shandong Univ, Jinan 250100, Peoples R China..
    Li, Lei
    Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China..
    Li, P. R.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Li, T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, W. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, W. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, X. L.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, X. M.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Li, X. N.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Li, X. Q.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Li, Z. B.
    Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China..
    Liang, H.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liang, J. J.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Liang, Y. F.
    Sichuan Univ, Chengdu 610064, Peoples R China..
    Liang, Y. T.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Liao, G. R.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Lin, D. X.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Liu, B. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, C. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, D.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, F. H.
    Shanxi Univ, Taiyuan 030006, Peoples R China..
    Liu, Fang
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, Feng
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Liu, H. B.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Liu, H. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;Henan Univ Sci & Technol, Luoyang 471003, Peoples R China..
    Liu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, J. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, J. P.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Liu, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, K.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Liu, K. Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Liu, L. D.
    Peking Univ, Beijing 100871, Peoples R China..
    Liu, P. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, Q.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Liu, S. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, X.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Liu, Y. B.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Liu, Z. A.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, Zhiqing
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Loehner, H.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Lou, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China.;Univ Texas Dallas, Richardson, TX 75083 USA..
    Lu, H. J.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Lu, J. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Lu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Lu, Y. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Luo, C. L.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Luo, M. X.
    Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China..
    Luo, T.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Luo, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Lyu, X. R.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Ma, F. C.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Ma, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, L. L.
    Shandong Univ, Jinan 250100, Peoples R China..
    Ma, M. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, Q. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, X. N.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Ma, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Maas, F. E.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Maggiora, M.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Mao, Y. J.
    Peking Univ, Beijing 100871, Peoples R China..
    Mao, Z. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Marcello, S.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Messchendorp, J. G.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Min, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Mitchell, R. E.
    Indiana Univ, Bloomington, IN 47405 USA..
    Mo, X. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Mo, Y. J.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Morales, C. Morales
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Moriya, K.
    Indiana Univ, Bloomington, IN 47405 USA..
    Muchnoi, N. Yu.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Novosibirsk State Univ, Novosibirsk 630090, Russia..
    Muramatsu, H.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Nefedov, Y.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Nerling, F.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Nikolaev, I. B.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Novosibirsk State Univ, Novosibirsk 630090, Russia..
    Ning, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Nisar, S.
    COMSATS Inst Informat Technol, Lahore 54000, Pakistan..
    Niu, S. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Niu, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Olsen, S. L.
    Seoul Natl Univ, Seoul 151747, South Korea..
    Ouyang, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Pacetti, S.
    Ist Nazl Fis Nucl, I-06100 Perugia, Italy.;Univ Perugia, I-06100 Perugia, Italy.;Ankara Univ, TR-06100 Ankara, Turkey..
    Pan, Y.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Patteri, P.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Pelizaeus, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Peng, H. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Peters, K.
    GSI Helmholtzctr Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Pettersson, Joachim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Ping, J. L.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Ping, R. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Poling, R.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Prasad, V.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Qi, M.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Qian, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Qiao, C. F.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Qin, L. Q.
    Shandong Univ, Jinan 250100, Peoples R China..
    Qin, N.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Qin, X. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qin, Z. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Qiu, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Rashid, K. H.
    Univ Punjab, Lahore 54590, Pakistan..
    Redmer, C. F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Ripka, M.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Rong, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Rosner, Ch.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Ruan, X. D.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Sarantsev, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Petersburg Nucl Phys Inst, NRC Kurchatov Inst, Gatchina 188300, Russia..
    Savrie, M.
    Univ Ferrara, I-44122 Ferrara, Italy..
    Schönning, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Schumann, S.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Shan, W.
    Peking Univ, Beijing 100871, Peoples R China..
    Shao, M.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Shen, C. P.
    Beihang Univ, Beijing 100191, Peoples R China..
    Shen, P. X.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Shen, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sheng, H. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Shi, M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Song, W. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Song, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sosio, S.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Spataro, S.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Sun, G. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, J. F.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Sun, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, X. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Y. J.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Sun, Y. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Z. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Sun, Z. T.
    Indiana Univ, Bloomington, IN 47405 USA..
    Tang, C. J.
    Sichuan Univ, Chengdu 610064, Peoples R China..
    Tang, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Tapan, I.
    Uludag Univ, TR-16059 Bursa, Turkey.;Bogazici Univ, TR-34342 Istanbul, Turkey..
    Thorndike, E. H.
    Univ Rochester, Rochester, NY 14627 USA..
    Tiemens, M.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Ullrich, M.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Uman, I.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey.;Ankara Univ, TR-06100 Ankara, Turkey..
    Varner, G. S.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Wang, B.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Wang, D.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, D. Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, L. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, L. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, M.
    Shandong Univ, Jinan 250100, Peoples R China..
    Wang, P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, P. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, S. G.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, W.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, W. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, X. F.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Wang, Y. D.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Wang, Y. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Y. Q.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wang, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Z. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Z. H.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Weber, T.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wei, D. H.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Wei, J. B.
    Peking Univ, Beijing 100871, Peoples R China..
    Weidenkaff, P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wen, S. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wiedner, U.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Wu, L. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wu, L. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wu, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xia, L.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xia, L. G.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Xia, Y.
    Hunan Univ, Changsha 410082, Hunan, Peoples R China..
    Xiao, D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xiao, H.
    Univ South China, Hengyang 421001, Peoples R China..
    Xiao, Z. J.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Xie, Y. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xiu, Q. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xu, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, J. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, Q. J.
    Hangzhou Normal Univ, Hangzhou 310036, Zhejiang, Peoples R China..
    Xu, X. P.
    Soochow Univ, Suzhou 215006, Peoples R China..
    Yan, L.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Yan, W. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yan, W. C.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yan, Y. H.
    Hunan Univ, Changsha 410082, Hunan, Peoples R China..
    Yang, H. J.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Yang, H. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yang, L.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Yang, Y.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Yang, Y. X.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Ye, M.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Ye, M. H.
    China Ctr Adv Sci & Technol, Beijing 100190, Peoples R China..
    Yin, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yu, B. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yu, C. X.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Yu, J. S.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Yuan, C. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yuan, W. L.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Yuan, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yuncu, A.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey.;Ankara Univ, TR-06100 Ankara, Turkey..
    Zafar, A. A.
    Univ Punjab, Lahore 54590, Pakistan..
    Zallo, A.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zeng, Y.
    Hunan Univ, Changsha 410082, Hunan, Peoples R China..
    Zeng, Z.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, B. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, B. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, C.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Zhang, C. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, D. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, H. H.
    Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China..
    Zhang, H. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, Y. T.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, Yu
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhang, Z. H.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Zhang, Z. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhang, Z. Y.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Zhao, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, Lei
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, Ling
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, M. G.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Zhao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Q. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, S. J.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Zhao, T. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, Z. G.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhemchugov, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Moscow Inst Phys & Technol, Moscow 141700, Russia..
    Zheng, B.
    Univ South China, Hengyang 421001, Peoples R China..
    Zheng, J. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zheng, W. J.
    Shandong Univ, Jinan 250100, Peoples R China..
    Zheng, Y. H.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhong, B.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Zhou, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhou, X.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Zhou, X. K.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhou, X. R.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhou, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, K. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhu, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, S. H.
    Univ Sci & Technol Liaoning, Anshan 114051, Peoples R China..
    Zhu, X. L.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Zhu, Y. C.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhu, Y. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, Z. A.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhuang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zotti, L.
    Univ Turin, I-10125 Turin, Italy. Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Zou, B. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zou, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Study of decay dynamics and CP asymmetry in D+ -> K(L)(0)e(+)nu(e) decay2015Ingår i: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 92, nr 11, artikel-id 112008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using 2.92 fb(-1) of electron-positron annihilation data collected at root s = 3.773 GeV with the BESIII detector, we obtain the first measurements of the absolute branching fraction B(D+ -> K(L)(0)e(+)nu(e)) = (4.481 +/- 0.027(stat) +/- 0.103(sys))% and the CP asymmetry A(CP)(D+-> KL0e+nu e) = (-0.59 +/- 0.60(stat) +/- 1.48(sys))%. From the D+ -> K(L)(0)e(+)nu(e) differential decay rate distribution, the product of the hadronic form factor and the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, f(+)(K)(0)vertical bar V-cs vertical bar, is determined to be 0.728 +/- 0.006(stat) +/- 0.011(sys). Using vertical bar V-cs vertical bar from the SM constrained fit with the measured f(+)(K)(0)vertical bar V-cs vertical bar, f(+)(K)(0) = 0.748 +/- 0.007(stat) +/- 0.012(sys) is obtained, and utilizing the unquenched Lattice QCD (LQCD) calculation for f(+)(K)(0), vertical bar V-cs vertical bar = 0.975 +/- 0.008(stat) +/- 0.015(sys) +/- 0.025(LQCD).

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Ablikim, M.
    et al.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Achasov, M. N.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Novosibirsk State Univ, Novosibirsk 630090, Russia..
    Ai, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Albayrak, O.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Albrecht, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Ambrose, D. J.
    Univ Rochester, Rochester, NY 14627 USA..
    Amoroso, A.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    An, F. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    An, Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Bai, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ferroli, R. Baldini
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy..
    Ban, Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Bennett, D. W.
    Indiana Univ, Bloomington, IN 47405 USA..
    Bennett, J. V.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Bertani, M.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy..
    Bettoni, D.
    INFN Sez Ferrara, I-44122 Ferrara, Italy..
    Bian, J. M.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Bianchi, F.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Boger, E.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Moscow Inst Phys & Technol, Moscow 141700, Russia..
    Boyko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Briere, R. A.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Cai, H.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Cai, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Cakir, O.
    Istanbul Aydin Univ, TR-34295 Istanbul, Turkey.;Ankara Univ, TR-06100 Ankara, Turkey..
    Calcaterra, A.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy..
    Cao, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cetin, S. A.
    Dogus Univ, TR-34722 Istanbul, Turkey..
    Chang, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Chelkov, G.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Moscow Inst Phys & Technol, Moscow 141700, Russia.;Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia..
    Chen, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Chen, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, M. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Chen, S. J.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Chen, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Chen, X. R.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Chen, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Cheng, H. P.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Chu, X. K.
    Peking Univ, Beijing 100871, Peoples R China..
    Cibinetto, G.
    INFN Sez Ferrara, I-44122 Ferrara, Italy..
    Dai, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Dai, J. P.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Dbeyssi, A.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Dedovich, D.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Deng, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Denig, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Denysenko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Destefanis, M.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    De Mori, F.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Ding, Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Dong, C.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Dong, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Dong, L. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dong, M. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Du, S. X.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Duan, P. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Eren, E. E.
    Dogus Univ, TR-34722 Istanbul, Turkey..
    Fan, J. Z.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Fang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Fang, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fang, X.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Fang, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fava, L.
    Univ Piemonte Orientale, I-15121 Alessandria, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Feldbauer, F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Felici, G.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy..
    Feng, C. Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Fioravanti, E.
    INFN Sez Ferrara, I-44122 Ferrara, Italy..
    Fritsch, M.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Fu, C. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, X. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Gao, Y.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Gao, Z.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Garzia, I.
    INFN Sez Ferrara, I-44122 Ferrara, Italy..
    Goetzen, K.
    GSI Helmholtzctr Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Gong, W. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Gradl, W.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Greco, M.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Gu, M. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Gu, Y. T.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Guan, Y. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, A. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, L. B.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Guo, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y. P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Haddadi, Z.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Hafner, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Han, S.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Hao, X. Q.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Harris, F. A.
    Univ Hawaii, Honolulu, HI 96822 USA..
    He, K. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    He, X. Q.
    Univ Sci & Technol Liaoning, Anshan 114051, Peoples R China..
    Held, T.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Heng, Y. K.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Hou, Z. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, C.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Hu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, J. F.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Hu, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Hu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Huang, G. M.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Huang, G. S.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Huang, J. S.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Huang, X. T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Huang, Y.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Hussain, T.
    Univ Punjab, Lahore 54590, Pakistan..
    Ji, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, Q. P.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Ji, X. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Jiang, L. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Jiang, L. W.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Jiang, X. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Jiang, X. Y.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Jiao, J. B.
    Shandong Univ, Jinan 250100, Peoples R China..
    Jiao, Z.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Jin, D. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Jin, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Julin, A.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Kalantar-Nayestanaki, N.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Kang, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Kang, X. S.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Kavatsyuk, M.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Ke, B. C.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Kiese, P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Kliemt, R.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Kloss, B.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Kolcu, O. B.
    Dogus Univ, TR-34722 Istanbul, Turkey.;Istanbul Arel Univ, TR-34295 Istanbul, Turkey..
    Kopf, B.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Kornicer, M.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Kuehn, W.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Lange, J. S.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Lara, M.
    Indiana Univ, Bloomington, IN 47405 USA..
    Larin, P.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Leng, C.
    Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Li, Cui
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Li, Cheng
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Li, D. M.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Li, F.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Li, F. Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Li, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, H. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, Jin
    Seoul Natl Univ, Seoul 151747, South Korea..
    Li, K.
    Hangzhou Normal Univ, Hangzhou 310036, Zhejiang, Peoples R China.;Shandong Univ, Jinan 250100, Peoples R China..
    Li, Lei
    Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China..
    Li, P. R.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Li, T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, W. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, W. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, X. L.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, X. M.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Li, X. N.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Li, X. Q.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Li, Z. B.
    Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China..
    Liang, H.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liang, Y. F.
    Sichuan Univ, Chengdu 610064, Peoples R China..
    Liang, Y. T.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Liao, G. R.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Lin, D. X.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Liu, B. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, C. L.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Liu, C. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, F. H.
    Shanxi Univ, Taiyuan 030006, Peoples R China..
    Liu, Fang
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, Feng
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Liu, H. B.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Liu, H. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;Henan Univ Sci & Technol, Luoyang 471003, Peoples R China..
    Liu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, J. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, J. P.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Liu, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, K.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Liu, K. Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Liu, L. D.
    Peking Univ, Beijing 100871, Peoples R China..
    Liu, P. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, Q.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Liu, S. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, X.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Liu, Y. B.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Liu, Z. A.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Liu, Zhiqing
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Loehner, H.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Lou, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China.;Univ Texas Dallas, Richardson, TX 75083 USA..
    Lu, H. J.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Lu, J. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Lu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Lu, Y. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Luo, C. L.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Luo, M. X.
    Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China..
    Luo, T.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Luo, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Lyu, X. R.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Ma, F. C.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Ma, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, L. L.
    Shandong Univ, Jinan 250100, Peoples R China..
    Ma, Q. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, X. N.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Ma, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Maas, F. E.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Maggiora, M.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Mao, Y. J.
    Peking Univ, Beijing 100871, Peoples R China..
    Mao, Z. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Marcello, S.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Messchendorp, J. G.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Min, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Mitchell, R. E.
    Indiana Univ, Bloomington, IN 47405 USA..
    Mo, X. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Mo, Y. J.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Morales, C. Morales
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Moriya, K.
    Indiana Univ, Bloomington, IN 47405 USA..
    Muchnoi, N. Yu.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Novosibirsk State Univ, Novosibirsk 630090, Russia..
    Muramatsu, H.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Nefedov, Y.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Nerling, F.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Nikolaev, I. B.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Indiana Univ, Bloomington, IN 47405 USA.;Novosibirsk State Univ, Novosibirsk 630090, Russia..
    Ning, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Nisar, S.
    COMSATS Inst Informat Technol, Lahore 54000, Pakistan..
    Niu, S. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Niu, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Olsen, S. L.
    Seoul Natl Univ, Seoul 151747, South Korea..
    Ouyang, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Pacetti, S.
    Ist Nazl Fis Nucl, I-06100 Perugia, Italy.;Univ Perugia, I-06100 Perugia, Italy..
    Patteri, P.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy..
    Pelizaeus, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Peng, H. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Peters, K.
    GSI Helmholtzctr Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Pettersson, Joachim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Ping, J. L.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Ping, R. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Poling, R.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Prasad, V.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qi, M.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Qian, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Qiao, C. F.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Qin, L. Q.
    Shandong Univ, Jinan 250100, Peoples R China..
    Qin, N.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Qin, X. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qin, Z. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Qiu, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Rashid, K. H.
    Univ Punjab, Lahore 54590, Pakistan..
    Redmer, C. F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Ripka, M.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Rong, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Rosner, Ch.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Ruan, X. D.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Santoro, V.
    INFN Sez Ferrara, I-44122 Ferrara, Italy..
    Sarantsev, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;NRC Kurchatov Inst, PNPI, Gatchina 188300, Russia..
    Savrie, M.
    Univ Ferrara, I-44122 Ferrara, Italy..
    Schoenning, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Schumann, S.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Shan, W.
    Peking Univ, Beijing 100871, Peoples R China..
    Shao, M.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Shen, C. P.
    Beihang Univ, Beijing 100191, Peoples R China..
    Shen, P. X.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Shen, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sheng, H. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Song, W. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Song, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sosio, S.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Spataro, S.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Sun, G. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, J. F.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Sun, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Y. J.
    Univ Turin, I-10125 Turin, Italy..
    Sun, Y. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Z. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Sun, Z. T.
    Indiana Univ, Bloomington, IN 47405 USA..
    Tang, C. J.
    Sichuan Univ, Chengdu 610064, Peoples R China..
    Tang, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Tapan, I.
    Uludag Univ, TR-16059 Bursa, Turkey..
    Thorndike, E. H.
    Univ Rochester, Rochester, NY 14627 USA..
    Tiemens, M.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Ullrich, M.
    Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Uman, I.
    Dogus Univ, TR-34722 Istanbul, Turkey..
    Varner, G. S.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Wang, B.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Wang, D.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, D. Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, L. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, L. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, M.
    Shandong Univ, Jinan 250100, Peoples R China..
    Wang, P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, P. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, S. G.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, W.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, X. F.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Wang, Y. D.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Wang, Y. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Y. Q.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wang, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Z. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Z. H.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Wang, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Weber, T.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wei, D. H.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Wei, J. B.
    Peking Univ, Beijing 100871, Peoples R China..
    Weidenkaff, P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wen, S. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wiedner, U.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Wu, L. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wu, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xia, L. G.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Xia, Y.
    Hunan Univ, Changsha 410082, Hunan, Peoples R China..
    Xiao, D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xiao, H.
    Univ South China, Hengyang 421001, Peoples R China..
    Xiao, Z. J.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Xie, Y. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xiu, Q. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Xu, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, Q. J.
    Hangzhou Normal Univ, Hangzhou 310036, Zhejiang, Peoples R China..
    Xu, X. P.
    Soochow Univ, Suzhou 215006, Peoples R China..
    Yan, L.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yan, W. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yan, W. C.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yan, Y. H.
    Hunan Univ, Changsha 410082, Hunan, Peoples R China..
    Yang, H. J.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Yang, H. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yang, L.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Yang, Y.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Yang, Y. X.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Ye, M.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Ye, M. H.
    China Ctr Adv Sci & Technol, Beijing 100190, Peoples R China..
    Yin, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yu, B. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Yu, C. X.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Yu, J. S.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Yuan, C. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yuan, W. L.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Yuan, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yuncu, A.
    Dogus Univ, TR-34722 Istanbul, Turkey.;Bogazici Univ, TR-34342 Istanbul, Turkey..
    Zafar, A. A.
    Univ Punjab, Lahore 54590, Pakistan..
    Zallo, A.
    INFN Lab Nazl Frascati, I-00044 Frascati, Italy..
    Zeng, Y.
    Hunan Univ, Changsha 410082, Hunan, Peoples R China..
    Zhang, B. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, B. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, C.
    Nanjing Univ, Nanjing 210093, Jiangsu, Peoples R China..
    Zhang, C. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, D. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, H. H.
    Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China..
    Zhang, H. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, J. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, X. Y.
    Shandong Univ, Jinan 250100, Peoples R China..
    Zhang, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, Y. N.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhang, Y. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, Y. T.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhang, Yu
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhang, Z. H.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Zhang, Z. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhang, Z. Y.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Zhao, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, Lei
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, Ling
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, M. G.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Zhao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Q. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, S. J.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Zhao, T. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhao, Z. G.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhemchugov, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.;Moscow Inst Phys & Technol, Moscow 141700, Russia..
    Zheng, B.
    Univ South China, Hengyang 421001, Peoples R China..
    Zheng, J. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zheng, W. J.
    Shandong Univ, Jinan 250100, Peoples R China..
    Zheng, Y. H.
    Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhong, B.
    Nanjing Normal Univ, Nanjing 210023, Jiangsu, Peoples R China..
    Zhou, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhou, X.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Zhou, X. K.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhou, X. R.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhou, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, K. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhu, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, S. H.
    Univ Sci & Technol Liaoning, Anshan 114051, Peoples R China..
    Zhu, X. L.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Zhu, Y. C.
    Univ Sci & Technol China, Hefei 230026, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zhu, Y. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, Z. A.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhuang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China..
    Zotti, L.
    Univ Turin, I-10125 Turin, Italy.;Ist Nazl Fis Nucl, I-10125 Turin, Italy..
    Zou, B. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zou, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Study of dynamics of D-0 -> K(-)e(+)nu(e) and D-0 -> pi(-)e(+)nu(e) decays2015Ingår i: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 92, nr 7, artikel-id 072012Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In an analysis of a 2.92 fb(-1) data sample taken at 3.773 GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions B(D-0 -> K(-)e(+)nu(e)) = (3.505 +/- 0.014 +/- 0.033)% and B(D-0 -> pi(-)e(+)nu(e)) = (0.295 +/- 0.004 +/- 0.003)%. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element f(+)(K)(0)vertical bar V-cs vertical bar = 0.7172 +/- 0.0025 +/- 0.0035 and f(+)(pi)(0)vertical bar V-cd vertical bar = 0.1435 +/- 0.0018 +/- 0.0009. Combining these products with the values of vertical bar V-cs(d)vertical bar from the SM constraint fit, we extract the hadronic form factors f(+)(K)(0) = 0.7368 +/- 0.0026 +/- 0.0036 and f(+)(pi)(0) = 0.6372 +/- 0.0080 +/- 0.0044, and their ratio f(+)(pi)(0)/f(+)(K)(0) = 0.8649 +/- 0.0112 +/- 0.0073. These form factors and their ratio are used to test unquenched lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of f(+)(K(pi))(0)vertical bar V-cs(d)vertical bar and the lattice QCD value for f(+)(K(pi))(0) are used to extract values of the CKM matrix elements of vertical bar V-cs vertical bar = 0.9601 +/- 0.0033 +/- 0.0047 +/- 0.0239 and vertical bar V-cd vertical bar = 0.2155 +/- 0.0027 +/- 0.0014 +/- 0.0094, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for f(+)(pi)(0)/f(+)(K)(0), we determine the ratio vertical bar V-cd vertical bar/vertical bar V-cs vertical bar = 0.238 +/- 0.004 +/- 0.002 +/- 0.011, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Ablikim, M.
    et al.
    Inst High Energy Phys, Beijing 100049, Peoples R China.
    Adlarson, Patrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik. Natl Ctr Nucl Res, PL-02093 Warsaw, Poland.
    Schönning, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Thorén, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Zou, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.
    Measurement of the CP-even fraction of D0 → π+ππ+π2022Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 106, nr 9, artikel-id 092004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A measurement of the CP-even fraction of the decay D0→π+π−π+π− is performed with a quantum-correlated ψ(3770)→D¯D data sample collected by the BESIII experiment, corresponding to an integrated luminosity of 2.93  fb−1. Using a combination of CP eigenstates, D→π+π−π0 and D→K0S,Lπ+π− as tagging modes, the CP-even fraction is measured to be F4π+=0.735±0.015±0.005, where the first uncertainty is statistical and the second is systematic. This is the most precise determination of this quantity to date. It provides valuable model-independent input for the measurement of the angle γ of the Cabibbo-Kobayashi-Maskawa matrix with B±→DK± decays, and for time-dependent studies of CP violation and mixing in the D0−¯D0 system.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 8.
    Ablyasova, Olesya S.
    et al.
    Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany;Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Guo, Meiyuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik. SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
    Zamudio-Bayer, Vicente
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Kubin, Markus
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Gitzinger, Tim
    Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany;Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    da Silva Santos, Mayara
    Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany;Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Flach, Max
    Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany;Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Timm, Martin
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Lundberg, Marcus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Lau, J. Tobias
    Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany;Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Hirsch, Konstantin
    Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
    Electronic Structure of the Complete Series of Gas-Phase Manganese Acetylacetonates by X-ray Absorption Spectroscopy2023Ingår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 127, nr 34, s. 7121-7131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metal centers in transition metal–ligand complexes occur in a variety of oxidation states causing their redox activity and therefore making them relevant for applications in physics and chemistry. The electronic state of these complexes can be studied by X-ray absorption spectroscopy, which is, however, due to the complex spectral signature not always straightforward. Here, we study the electronic structure of gas-phase cationic manganese acetylacetonate complexes Mn(acac)1–3+ using X-ray absorption spectroscopy at the metal center and ligand constituents. The spectra are well reproduced by multiconfigurational wave function theory, time-dependent density functional theory as well as parameterized crystal field and charge transfer multiplet simulations. This enables us to get detailed insights into the electronic structure of ground-state Mn(acac)1–3+ and extract empirical parameters such as crystal field strength and exchange coupling from X-ray excitation at both the metal and ligand sites. By comparison to X-ray absorption spectra of neutral, solvated Mn(acac)2,3 complexes, we also show that the effect of coordination on the L3 excitation energy, routinely used to identify oxidation states, can contribute about 40–50% to the observed shift, which for the current study is 1.9 eV per oxidation state.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Adesso, Gerardo
    et al.
    Centre for Quantum Computation, DAMTP, Univ. of Cambridge, UK.
    Ericsson, Marie
    Centre for Quantum Computation, DAMTP, Univ. of Cambridge, UK.
    Optical implementation and entanglement distribution in Gaussian valence bond states2007Ingår i: Optics and Spectroscopy, ISSN 0030-400X, E-ISSN 1562-6911, Vol. 103, nr 2, s. 178-186Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study Gaussian valence bond states of continuous variable systems, obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of $N$ sites of an harmonic chain. The entanglement distribution in Gaussian valence bond states can be controlled by varying the input amount of entanglement engineered in a (2M+1)-mode Gaussian state known as the building block, which is isomorphic to the projector applied at a given site. We show how this mechanism can be interpreted in terms of multiple entanglement swapping from the chain of ancillary bonds, through the building blocks. We provide optical schemes to produce bisymmetric three-mode Gaussian building blocks (which correspond to a single bond, M=1), and study the entanglement structure in the output Gaussian valence bond states. The usefulness of such states for quantum communication protocols with continuous variables, like telecloning and teleportation networks, is finally discussed.

  • 10.
    Adlmann, Franz A.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Pálsson, Gunnar Karl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Bilheux, J. C.
    Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA..
    Ankner, J. F.
    Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA..
    Gutfreund, P.
    Inst Laue Langevin, BP 156, F-38042 Grenoble, France..
    Kawecki, M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Wolff, Max
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Överlåtaren: a fast way to transfer and orthogonalize two-dimensional off-specular reflectivity data2016Ingår i: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 49, s. 2091-2099Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reflectivity measurements offer unique opportunities for the study of surfaces and interfaces, and specular reflectometry has become a standard tool in materials science to resolve structures normal to the surface of a thin film. Off-specular scattering, which probes lateral structures, is more difficult to analyse, because the Fourier space being probed is highly anisotropic and the scattering pattern is truncated by the interface. As a result, scattering patterns collected with (especially time-of-flight) neutron reflectometers are difficult to transform into reciprocal space for comparison with model calculations. A program package is presented for a generic two-dimensional transformation of reflectometry data into q space and back. The data are represented on an orthogonal grid, allowing cuts along directions relevant for theoretical modelling. This treatment includes background subtraction as well as a full characterization of the resolution function. The method is optimized for computational performance using repeatable operations and standardized instrument settings.

  • 11.
    Agelii, Harald
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Dipole Orientation of Gas Phase Ubiquitin Using Time Dependent Electric Fields2020Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [en]

    The method of dipole orientation of protein complexes using electric fields plays a key role in the development of single particle imaging, since it enables orientation of the protein in vacuum. In the orientation process the protein is exposed to an external electric field along which the dipole axis of the protein will eventually align. Earlier studies using molecular dynamics simulations have implemented a constant electric field to examine the dipole orientation process. However, when injected into the electric field the protein experiences a gradually increasing field strength converging to some terminal field strength rather than a constant electric field. In order to examine the effects of the time-dependant nature of the electric field, in comparison to a constant one, fields with different time dependances were implemented in molecular dynamics simulations in vacuum performed with GROMACS. Ubiquitin was chosen as a model protein. The results of the study show time-increasing fields tend to result in slower orientation, but preserve the structure of the protein better than for a constant field. It was also shown that after 10 ns electric field exposure, with terminal field strengths greater  or equal to 0.6Vnm^-1, there was no apparent difference of the average degree of orientation of proteins within the time-increasing fields and the constant one. However, for fields of greater or equal to 1.5Vnm^-1 the constant field tended to result in a larger change of the protein structure.

    Ladda ner fulltext (pdf)
    Dipole Orientation of Gas Phase Ubiquitin Using Time Dependent Electric Fields
  • 12.
    Aghda, Soheil Karimi
    et al.
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    Bogdanovski, Dimitri
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    Löfler, Lukas
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany.
    Sua, Heng Han
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    Patterer, Lena
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    Holzapfel, Damian M.
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    le Febvrier, Arnaud
    Linköping Univ, Dept Phys Chem & Biol IFM, Thin Film Phys Div, SE-58183 Linköping, Sweden..
    Hans, Marcus
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    Primetzhofer, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Schneider, Jochen M.
    Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany..
    Valence electron concentration- and N vacancy-induced elasticity in cubic early transition metal nitrides2023Ingår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 255, artikel-id 119078Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Motivated by frequently reported deviations from stoichiometry in cubic transition metal nitride (TMNx) thin films, the effect of N-vacancy concentration on the elastic properties of cubic TiNx, ZrNx, VNx, NbNx, and MoNx (0.72 & LE; x & LE; 1.00) is systematically studied by density functional theory (DFT) calculations. The predictions are validated experimentally for VNx (0.77 & LE; x & LE; 0.97). The DFT results indicate that the elastic behavior of the TMNx depends on both the N-vacancy concentration and the valence electron concentration (VEC) of the transition metal: While TiNx and ZrNx exhibit vacancy-induced reductions in elastic modulus, VNx and NbNx show an increase. These trends can be rationalized by considering vacancy-induced changes in elastic anisotropy and bonding. While introduction of N-vacancies in TiNx results in a significant reduction of elastic modulus along all directions and a lower average bond strength of Ti-N, the vacancy-induced reduction in [001] direction of VNx is overcompensated by the higher stiffness along [011] and [111] directions, resulting in a higher average bond strength of V-N. To validate the predicted vacancy-induced changes in elasticity experimentally, close-to-singlecrystal VNx (0.77 & LE; x & LE; 0.97) are grown on MgO(001) substrates. As the N-content is reduced, the relaxed lattice parameter a0, as probed by X-ray diffraction, decreases from 4.128 & ANGS; to 4.096 & ANGS;. This reduction in lattice parameter is accompanied by an anomalous 11% increase in elastic modulus, as determined by nanoindentation. As the experimental data agree with the predictions, the elasticity enhancement in VNx upon N-vacancy formation can be understood based on the concomitant changes in elastic anisotropy and bonding.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Agåker, Marcus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Andersson, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Englund, J.C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Rausch, Joachim
    Giessen University.
    Rubensson, Jan-Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Nordgren, Joseph
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Spectroscopy in the vacuum-ultraviolet2011Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 5, s. 248-Artikel i tidskrift (Refereegranskat)
  • 14.
    Ahlgren Cederlöf, Ebba
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik. KTH, Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden.
    Bäck, T.
    KTH, Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden..
    Nyberg, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Qi, C.
    KTH, Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden..
    Ataç, A.
    KTH, Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden..
    Badran, H.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Braunroth, T.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany.;Gesell Anlagen & Reaktorsicherheit GRS GmbH, D-590667 Cologne, Germany..
    Calverley, T.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Cox, D. M.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Doncel, M.
    Univ Salamanca, Dept Fis Fundamental, Lab Radiac Ionizantes, Salamanca 37008, Spain.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Grahn, T.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Greenlees, P.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Hilton, J.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland.;Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 7ZE, England..
    Julin, R.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Juutinen, S.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Konki, J.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Li, H.
    GANIL, CEA, DRF, CNRS,IN2P3, BP 55027, F-14076 Caen 5, France..
    Matta, S.
    KTH, Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden..
    Modamio, V.
    Univ Oslo, Dept Phys, NO-0316 Oslo, Norway..
    Nara Singh, B. S.
    Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England.;Univ West Scotland, Sch Comp Engn & Phys Sci, Paisley PA1 2BE, England..
    Pakarinen, J.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Papadakis, P.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland.;STFC Daresbury Lab, Warrington WA4 4AD, England..
    Partanen, J.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Rahkila, P.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Ruotsalainen, P.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Sandzelius, M.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Sarén, J.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Scholey, C.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Stolze, S.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Subramaniam, P.
    KTH, Royal Inst Technol, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden..
    Uusitalo, J.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland..
    Valiente-Dobón, J. J.
    INFN, Lab Nazl Legnaro, Legnaro, Italy..
    Lifetime measurement of the yrast 2+ state in 118Te2023Ingår i: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 59, nr 12, artikel-id 300Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The electromagnetic transition probabilities of the yrast 2+ states in the midshell Te isotopes, two protons above the closed shell at Sn, are of great importance for the understanding of nuclear collectivity in these isotopes and the role played by the neutron-proton interactions and cross-shell excitations. However, the large uncertainty of the experimental data for the midshell nucleus 118Te and the missing data for 116Te make it difficult to pin down the general trend of the evolution of transition probabilities as a function of the neutron number. In this work, the lifetime of the yrast 2+ state in 118Te was measured, with the aim of reducing the uncertainty of the previous measurement. The result is τ2+ = 7.46(19) ps. In addition, the lifetime of the 4+ state was measured to be τ4+ = 4.25(23) ps. The experimental transition rates are extracted from the measured lifetimes and compared with systematic large-scale shell-model calculations. The trend of the B(E2; 0+ → 2+) values in the midshell area is in good agreement with the calculations and the calculated B4/2 ratio provide evidence for 118Te as a near perfect harmonic vibrator.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 15.
    Ahmadivand, Arash
    et al.
    Rice Univ, Dept Elect & Comp Engn, 6100 Main St, Houston, TX 77005 USA.
    Gerislioglu, Burak
    Rice Univ, Dept Phys & Astron, 6100 Main St, Houston, TX 77005 USA.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Mishra, Yogendra Kumar
    Univ Kiel, Funct Nanomat, Inst Mat Sci, Kaiserstr 2, D-24143 Kiel, Germany.
    Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings2020Ingår i: Materials Today, ISSN 1369-7021, E-ISSN 1873-4103, Vol. 32, s. 108-130Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    This work reviews fundamentals and the recent state-of-art achievements in the field of plasmonic biosensing based terahertz (THz) spectroscopy. Being nonpoisonous and nondestructive to the human tissues, THz signals offer promising, cost-effective, and real-time biodevices for practical pharmaco-logical applications such as enzyme reaction analysis. Rapid developments in the field of THz plasmonics biosensors and immunosensors have brought many methodologies to employ the resonant subwavelength structures operating based on the fundamental physics of multipoles and asymmetric lineshape resonances. In the ongoing hunt for new and advanced THz plasmonic biosensors, the toroidal metasensors have emerged as excellent alternates and are introduced to be a very promising technology for THz immunosensing applications. Here, we provide examples of recently proposed THz plasmonic metasensors for the detection of thin films, chemical and biological substances. This review allows to compare the performance of various biosensing tools based on THz plasmonic approach and to understand the strategic role of toroidal metasensors in highly accurate and sensitive biosensors instrumentation. The possibility of using THz plasmonic biosensors based on toroidal technology in modern medical and clinical practices has been briefly discussed.

  • 16.
    Ahmadivand, Arash
    et al.
    Rice Univ, Dept Elect & Comp Engn, 6100 Main St, Houston, TX 77005 USA..
    Gerislioglu, Burak
    Rice Univ, Dept Phys & Astron, 6100 Main St, Houston, TX 77005 USA..
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala Univ, Condensed Matter Theory Grp, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden..
    Mishra, Yogendra Kumar
    Univ Southern Denmark, Mads Clausen Inst, NanoSYD, Alsion 2, DK-6400 Sonderborg, Denmark..
    Toroidal Metaphotonics and Metadevices2020Ingår i: Laser & Photonics reviews, ISSN 1863-8880, E-ISSN 1863-8899, Vol. 14, nr 11, artikel-id 1900326Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Toroidal moments in artificial media have received growing attention and considered as a promising framework for initiating novel approaches to manage intrinsic radiative losses in nanophotonic and plasmonic systems. In the past decade, there has been substantial attention on the characteristics and excitation methods of toroidal multipoles-in particular, toroidal dipole-in 3D bulk and planar metaplatforms. The remarkable advantages of toroidal resonances have thrust the toroidal metasurface technology from relative anonymity into the limelight, in which researchers have recently centered on developing applied optical and optoelectronic subwavelength devices based on toroidal metaphotonics and metaplasmonics. In this focused contribution, the key principles of 3D and flatland toroidal metastructures are described, and the revolutionary tools that have been implemented based on this topology are briefly highlighted. Infrared photodetectors, immunobiosensors, ultraviolet beam sources, waveguides, and functional modulators are some of the fundamental and latest examples of toroidal metadevices that have been introduced and studied experimentally so far. The possibility of the realization of strong plexciton dynamics and pronounced vacuum Rabi oscillations in toroidal plasmonic metasurfaces are also presented in this review. Ultimate efficient extreme-subwavelength scale devices, such as low-threshold lasers and ultrafast switches, are thus in prospect.

  • 17.
    Ahufinger, V.
    et al.
    Grup d’Òptica, Departament de Física, Universitat Autònoma de Barcelona, E-08193 Belaterra, Barcelona, Spain;Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany.
    Sanchez-Palencia, L.
    Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany;Laboratoire Charles Fabry, Institut d’Optique Théorique et Appliquée, Université Paris-Sud XI, F-91403 Orsay Cedex, France.
    Kantian, A.
    Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany;Institut für Quantenoptik und Quanteninformation der Österreichischen, Akademie der Wissenschaften, A-6020 Innsbruck, Austria;Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.
    Sanpera, A.
    Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany;Grup de Física Teòrica, Departament de Física, Universitat Autònoma de Barcelona, E-08193 Belaterra, Barcelona, Spain.
    Lewenstein, M.
    Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany;Institut de Ciències Fotòniques, E-08034 Barcelona, Spain.
    Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures2005Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 72, nr 6Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, composite fermions. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, “dirty” superfluids, disordered metallic phases, and phases involving quantum percolation.

  • 18.
    Ahvenniemi, Esko
    et al.
    Aalto Univ, Dept Chem, POB 16100, FI-00076 Espoo, Finland..
    Akbashev, Andrew R.
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Ali, Saima
    Aalto Univ, Sch Chem Technol, Dept Mat Sci & Engn, POB 16200, FI-00076 Aalto, Finland..
    Bechelany, Mikhael
    Univ Montpellier, ENSCM, CNRS, IEM,UMR 5635, Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Berdova, Maria
    Univ Twente, Ind Focus Grp XUV Opt, NL-7522 ND Enschede, Netherlands..
    Boyadjiev, Stefan
    Bulgarian Acad Sci, Inst Solid State Phys, 72 Tzarigradsko Chaussee Blvd, Sofia 1784, Bulgaria..
    Cameron, David C.
    Masaryk Univ, CEPLANT, Kotlarska 267-2, CS-61137 Brno, Czech Republic..
    Chen, Rong
    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China..
    Chubarov, Mikhail
    Univ Grenoble Alpes, CNRS, SIMAP, F-38000 Grenoble, France..
    Cremers, Veronique
    Univ Ghent, CoCooN, Dept Solid State Sci, Krijgslaan 281-S1, B-9000 Ghent, Belgium..
    Devi, Anjana
    Ruhr Univ Bochum, Inorgan Mat Chem, D-44801 Bochum, Germany..
    Drozd, Viktor
    St Petersburg State Univ, Inst Chem, Univ Skaya Emb 7-9, St Petersburg 199034, Russia..
    Elnikova, Liliya
    Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya 25, Moscow 117218, Russia..
    Gottardi, Gloria
    Fdn Bruno Kessler, Ctr Mat & Microsyst, I-38123 Trento, Italy..
    Grigoras, Kestutis
    VTT Tech Res Ctr Finland, POB 1000,Tietotie 3, FI-02044 Espoo, Vtt, Finland..
    Hausmann, Dennis M.
    Lam Res Corp, Tualatin, OR 97062 USA..
    Hwang, Cheol Seong
    Seoul Natl Univ, Dept Mat Sci & Engn, Coll Engn, Seoul 08826, South Korea.;Seoul Natl Univ, Interuniv Semicond Res Ctr, Coll Engn, Seoul 08826, South Korea..
    Jen, Shih-Hui
    Globalfoundries, Albany, NY 12203 USA..
    Kallio, Tanja
    Aalto Univ, Sch Chem Engn, Dept Chem, POB 16100, FI-00076 Aalto, Finland..
    Kanervo, Jaana
    Aalto Univ, Sch Chem Engn, Dept Chem, POB 16100, FI-00076 Aalto, Finland.;Abo Akad Univ, FI-20500 Turku, Finland..
    Khmelnitskiy, Ivan
    St Petersburg Electrotech Univ LETI, Res & Educ Ctr Nanotechnol, Ul Prof Popova 5, St Petersburg 197376, Russia..
    Kim, Do Han
    MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA..
    Klibanov, Lev
    Techinsights, 3000 Solandt Rd, Ottawa, ON K2K2X2, Canada..
    Koshtyal, Yury
    Ioffe Inst, Lab Lithium Ion Technol, 26 Politekhnicheskaya, St Petersburg 194021, Russia..
    Krause, A. Outi I.
    Aalto Univ, Sch Chem Technol, Dept Mat Sci & Engn, POB 16200, FI-00076 Aalto, Finland..
    Kuhs, Jakob
    Univ Ghent, CoCooN, Dept Solid State Sci, Krijgslaan 281-S1, B-9000 Ghent, Belgium..
    Kaerkkaenen, Irina
    Sentech Instruments GmbH, Schwarzschildstr 2, D-12489 Berlin, Germany..
    Kaariainen, Marja-Leena
    NovaldMed Ltd Oy, Telkantie 5, FI-82500 Kitee, Finland..
    Kaariainen, Tommi
    NovaldMed Ltd Oy, Telkantie 5, FI-82500 Kitee, Finland.;Univ Helsinki, Inorgan Chem Lab, POB 55,AI Virtasen Aukio 1, FI-00014 Helsinki, Finland..
    Lamagna, Luca
    STMicroelectronics, Via C Olivetti 2, I-20864 Agrate Brianza, MB, Italy..
    Lapicki, Adam A.
    Seagate Technol Ireland, 1 Disc Dr, Derry BT48 7BD, North Ireland..
    Leskela, Markku
    Univ Helsinki, Dept Chem, POB 55, FI-00014 Helsinki, Finland..
    Lipsanen, Harri
    Aalto Univ, Dept Micro & Nanosci, Tietotie 3, Espoo 02150, Finland..
    Lyytinen, Jussi
    Aalto Univ, Sch Chem Technol, Dept Mat Sci & Engn, POB 16200, FI-00076 Aalto, Finland..
    Malkov, Anatoly
    Tech Univ, St Petersburg State Inst Technol, Dept Chem Nanotechnol & Mat Elect, 26 Moskovsky Prosp, St Petersburg 190013, Russia..
    Malygin, Anatoly
    Tech Univ, St Petersburg State Inst Technol, Dept Chem Nanotechnol & Mat Elect, 26 Moskovsky Prosp, St Petersburg 190013, Russia..
    Mennad, Abdelkader
    CDER, UDES, RN 11 BP 386 Bou Ismail, Tipasa 42415, Algeria..
    Militzer, Christian
    Tech Univ Chemnitz, Inst Chem, Phys Chem, Str Nationen 62, D-09111 Chemnitz, Germany..
    Molarius, Jyrki
    Summa Semicond Oy, PL 11, Espoo 02131, Finland..
    Norek, Malgorzata
    Mil Univ Technol, Fac Adv Technol & Chem, Dept Adv Mat & Technol, Str Kaliskiego 2, PL-00908 Warsaw, Poland..
    Ozgit-Akgun, Cagla
    ASELSAN Inc, Microelect Guidance & Electroopt Business Sect, TR-06750 Ankara, Turkey..
    Panov, Mikhail
    St Petersburg Electrotech Univ LETI, Ctr Microtechnol & Diagnost, Ul Prof Popova 5, St Petersburg 197376, Russia..
    Pedersen, Henrik
    Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden..
    Piallat, Fabien
    KOBUS, F-38330 Montbonnot St Martin, France..
    Popov, Georgi
    Univ Helsinki, Dept Chem, POB 55, FI-00014 Helsinki, Finland..
    Puurunen, Riikka L.
    VTT Tech Res Ctr Finland, POB 1000,Tietotie 3, FI-02044 Espoo, Vtt, Finland..
    Rampelberg, Geert
    Univ Ghent, CoCooN, Dept Solid State Sci, Krijgslaan 281-S1, B-9000 Ghent, Belgium..
    Ras, Robin H. A.
    Rauwel, Erwan
    Tallinn Univ Technol, Tartu Coll, Puiestee 78, EE-51008 Tartu, Estonia..
    Roozeboom, Fred
    Eindhoven Univ Technol, Dept Appl Phys, Grp Plasma & Mat Proc, POB 513, NL-5600 MB Eindhoven, Netherlands.;TNO, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands..
    Sajavaara, Timo
    Univ Jyvaskyla, Dept Phys, POB 35, Jyvaskyla 40014, Finland..
    Salami, Hossein
    Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA..
    Savin, Hele
    Aalto Univ, Dept Micro & Nanosci, Tietotie 3, Espoo 02150, Finland..
    Schneider, Nathanaelle
    IRDEP CNRS, 6 Quai Watier, F-78401 Chatou, France.;IPVF, 8 Rue Renaissance, F-92160 Antony, France..
    Seidel, Thomas E.
    Seitek50, POB 350238, Palm Coast, FL 32135 USA..
    Sundqvist, Jonas
    Fraunhofer Inst Ceram Technol & Syst IKTS, Syst Integrat & Technol Transfer, Winterbergstr 28, D-01277 Dresden, Germany..
    Suyatin, Dmitry B.
    Lund Univ, Div Solid State Phys, Box 118, SE-22100 Lund, Sweden.;Lund Univ, NanoLund, Box 118, SE-22100 Lund, Sweden..
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    van Ommen, J. Ruud
    Delft Univ Technol, Dept Chem Engn, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands..
    Wiemer, Claudia
    CNR, IMM, Lab MDM, Via C Olivetti 2, I-20864 Agrate Brianza, MB, Italy..
    Ylivaara, Oili M. E.
    VTT Tech Res Ctr Finland, POB 1000,Tietotie 3, FI-02044 Espoo, Vtt, Finland..
    Yurkevich, Oksana
    Immanuel Kant Balt Fed Univ, Res & Educ Ctr Funct Nanomat, A Nevskogo 14, Kaliningrad 236041, Russia..
    Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD"2017Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 35, nr 1, artikel-id 010801Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Akser, Marielle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Detections of nuclear explosions by triple coincidence2021Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [en]

    When a nuclear explosion occurs certain radionuclides are emitted, notably xenon. Due to the fact that xenon is a noble gas, it is hard to contain and can therefore be detected far from the explosion site. There are four isotopes of xenon that are of interest in the detection of a nuclear explosion: 131mXe, 133mXe, 133Xe and 135Xe. By constantly measuring the amount of these isotopes in the air, changes in the concentration in an indication that a nuclear explosion has occurred. In this thesis a detector was modelled in GEANT4 and focuses on one kind of noble gas detector: SAUNA - the Swedish Automatic Unit for Noble gas Acquisition. SAUNA uses the coincidence technique in order to determine the concentration of xenon there is in the air. By using the coincidence technique, it is possible to reduce the impact of the background radiation and therefore increase the efficiency of the detector. 133Xe has a coincidence when it first undergoes beta decay, with an endpoint energy of 346 keV, and then emits a 80 keV gamma particle. 135Xe has also a dual coincidence, a beta decay with an endpoint energy of 910 keV together with a 250 keV gamma-ray. However both these isotopes have a triple coincidence decay that also can be exploited: for 133Xe, a beta particle with endpoint energy of 346 keV, a 30 keV X-ray and a 45 keV conversion electron, while for 135Xe there is instead of the gamma particle a 30 keV X-ray and a 214keV conversion electron that can be emitted together with the beta particle. The 30 keV X-ray together with the beta particle for 133Xe can also be used as a dual coincidence, in that case the conversion electron is ignored. For 133Xe, when a beta particle, a 45 keV conversion electron, and a 30 keV X-ray are emitted, the model was able to detect all three particles in 69.2% ± 0.1 of the cases. However, when only the particles with a detected energy within a 5 keV interval of their generated energies are considered to be in coincidence, then for 133Xe triple coincidence occurs in 22.9% ± 0.2 of the cases. For 135Xe the model was able to detect the triple coincidence (between a beta, 214 keV CE and 30 keV X-ray) in 63.5% ± 0.1 of the cases. This work shows that adding another particle in a coincidence reduces the chance to detect the coincidence. The positive effect of adding another particle in a coincidence is that the minimum detectable concentration of xenon should be smaller. The goal for future detectors should be to make it possible for the detector to take advantage of the triple coincidences but at the same time be also able to use the dual coincidences.

    Ladda ner fulltext (pdf)
    fulltext
  • 20. Alagia, M
    et al.
    Coreno, M
    Farrokhpour, H
    Franceschi, P
    Mihelic, A
    Moise, A
    Omidyan, R
    Prince, K C
    Richter, R
    Söderström, J
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Stranges, S
    Tabrizchi, M
    Åœitnik, M
    Angular effects in autoionization of 3 P doubly excited states in He2009Ingår i: Journal of Physics: Conference Series, Vol. 194Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The first members of dipole allowed 3 P o doubly excited series in helium have been observed in resonant photoexcitation of 1 s 2 s 3 S e metastable atoms. A good agreement measured relative photoionization cross sections is achieved when theory includes the radiation damping and, also important, the effects of spin-orbit multiplet splitting on electron angular distribution.

  • 21. Alagia, M
    et al.
    Coreno, M
    Farrokhpour, H
    Franceschi, P
    Mihelič, A
    Moise, A
    Omidyan, R
    Prince, K C
    Richter, R
    Söderström, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Stranges, S
    Tabrizchi, M
    Åœitnik, M
    Angular effects in autoionization of 3 P doubly excited states in He2009Ingår i: Journal of Physics: Conference Series, Vol. 194, nr 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The first members of dipole allowed 3 P o doubly excited series in helium have been observed in resonant photoexcitation of 1 s 2 s 3 S e metastable atoms. A good agreement measured relative photoionization cross sections is achieved when theory includes the radiation damping and, also important, the effects of spin-orbit multiplet splitting on electron angular distribution.

  • 22.
    Albert, Damien
    et al.
    Univ Grenoble Alpes, CNRS, OSUG, Unite Mixte Rech 832, F-38000 Grenoble, France..
    Antony, Bobby K.
    Indian Sch Mines, Indian Inst Technol, Dhanbad 826004, Bihar, India..
    Ba, Yaye Awa
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Babikov, Yuri L.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia.;Tomsk State Univ, Phys Dept, Lab Quantum Mech & Radiat Transfer QUAMER, Tomsk 634050, Russia..
    Bollard, Philippe
    Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France..
    Boudon, Vincent
    Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, CNRS, UMR 6303, 9 Ave Alain Savary,BP 47 870, F-21078 Dijon, France..
    Delahaye, Franck
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Del Zanna, Giulio
    DAMTP, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England..
    Dimitrijevic, Milan S.
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France.;Astron Observ, Volgina 7, Belgrade 11060, Serbia..
    Drouin, Brian J.
    CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA..
    Dubernet, Marie-Lise
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Duensing, Felix
    Univ Innsbruck, Inst Ion Phys & Appl Phys, Technikerstr 25-3, A-6020 Innsbruck, Austria..
    Emoto, Masahiko
    Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan..
    Endres, Christian P.
    Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany..
    Fazliev, Alexandr Z.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia..
    Glorian, Jean-Michel
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, 9 Av Colonel Roche, F-31028 Toulouse 4, France..
    Gordon, Iouli E.
    Ctr Astrophys Harvard & Smithsonian, Atom & Mol Phys Div, MS50,60 Garden St, Cambridge, MA 02138 USA..
    Gratier, Pierre
    Univ Bordeaux, CNRS, Lab Astrophys Bordeaux, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France..
    Hill, Christian
    Vienna Int Ctr, Div Phys & Chem Sci, Nucl Data Sect, Int Atom Energy Agcy IAEA, A-1400 Vienna, Austria..
    Jevremovic, Darko
    Astron Observ, Volgina 7, Belgrade 11060, Serbia..
    Joblin, Christine
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, 9 Av Colonel Roche, F-31028 Toulouse 4, France..
    Kwon, Duck-Hee
    Korea Atom Energy Res Inst, Nucl Data Ctr, Daejeon 34057, South Korea..
    Kochanov, Roman V.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia.;Tomsk State Univ, Phys Dept, Lab Quantum Mech & Radiat Transfer QUAMER, Tomsk 634050, Russia..
    Krishnakumar, Erumathadathil
    Raman Res Inst, CV Raman Ave, Bangalore 560080, Karnataka, India..
    Leto, Giuseppe
    INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy..
    Loboda, Petr A.
    All Russian Inst Tech Phys RFNC VNIITF, Russian Fed Nucl Ctr, Snezhinsk 456770, Russia.;Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow 115409, Russia..
    Lukashevskaya, Anastasiya A.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia..
    Lyulin, Oleg M.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia..
    Marinkovic, Bratislav P.
    Univ Belgrade, Inst Phys Belgrade, POB 57, Belgrade 11001, Serbia..
    Markwick, Andrew
    Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England..
    Marquart, Thomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Observationell astrofysik.
    Mason, Nigel J.
    Univ Kent, Sch Phys Sci, Ingram Bldg, Canterbury CT2 7NH, Kent, England..
    Mendoza, Claudio
    Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA..
    Millar, Tom J.
    Queens Univ Belfast, Sch Math & Phys, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland..
    Moreau, Nicolas
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Morozov, Serguei V.
    All Russian Inst Tech Phys RFNC VNIITF, Russian Fed Nucl Ctr, Snezhinsk 456770, Russia..
    Moeller, Thomas
    Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany..
    Mueller, Holger S. P.
    Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany..
    Mulas, Giacomo
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, 9 Av Colonel Roche, F-31028 Toulouse 4, France.;Osservatorio Astron Cagliari, Ist Nazl AstroFis, Via Sci 5, I-09047 Selargius, CA, Italy..
    Murakami, Izumi
    Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan.;Grad Univ Adv Studies, Dept Fus Sci, SOKENDAI, Toki, Gifu 5095292, Japan..
    Pakhomov, Yury
    Russian Acad Sci, Inst Astron, Pyatnitskaya 48, Moscow 119017, Russia..
    Palmeri, Patrick
    Univ Mons, Phys Atom & Astrophys, B-7000 Mons, Belgium..
    Penguen, Julien
    Univ La Rochelle, Observ Aquitain Sci Univers, Univ Bordeaux, POREA,CNRS,IRSTEA, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France..
    Perevalov, Valery I.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia..
    Piskunov, Nikolai
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Observationell astrofysik.
    Postler, Johannes
    Univ Innsbruck, Inst Ion Phys & Appl Phys, Technikerstr 25-3, A-6020 Innsbruck, Austria..
    Privezentsev, Alexei I.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia..
    Quinet, Pascal
    Univ Mons, Phys Atom & Astrophys, B-7000 Mons, Belgium.;Univ Liege, IPNAS, B-4000 Liege, Belgium..
    Ralchenko, Yuri
    Natl Inst Stand & Technol, Atom Spect Grp, Gaithersburg, MD 20899 USA..
    Rhee, Yong-Joo
    Inst Basic Sci, Ctr Relativist Laser Sci, Gwang Ju 61005, South Korea..
    Richard, Cyril
    Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, CNRS, UMR 6303, 9 Ave Alain Savary,BP 47 870, F-21078 Dijon, France..
    Rixon, Guy
    Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England..
    Rothman, Laurence S.
    Ctr Astrophys Harvard & Smithsonian, Atom & Mol Phys Div, MS50,60 Garden St, Cambridge, MA 02138 USA..
    Roueff, Evelyne
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Ryabchikova, Tatiana
    Russian Acad Sci, Inst Astron, Pyatnitskaya 48, Moscow 119017, Russia..
    Sahal-Brechot, Sylvie
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Scheier, Paul
    Univ Innsbruck, Inst Ion Phys & Appl Phys, Technikerstr 25-3, A-6020 Innsbruck, Austria..
    Schilke, Peter
    Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany..
    Schlemmer, Stephan
    Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany..
    Smith, Ken W.
    Queens Univ Belfast, Sch Math & Phys, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland..
    Schmitt, Bernard
    Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France..
    Skobelev, Igor Yu.
    Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow 115409, Russia.;Russian Acad Sci, Joint Inst High Temp, Moscow 141570, Russia..
    Sreckovic, Vladimir A.
    Univ Belgrade, Inst Phys Belgrade, POB 57, Belgrade 11001, Serbia..
    Stempels, H. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Observationell astrofysik.
    Tashkun, Serguey A.
    Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Zuev Sq 1, Tomsk 634055, Russia..
    Tennyson, Jonathan
    UCL, Dept Phys & Astron, London WC1E 6BT, England..
    Tyuterev, Vladimir G.
    Tomsk State Univ, Phys Dept, Lab Quantum Mech & Radiat Transfer QUAMER, Tomsk 634050, Russia.;UFR Sci, CNRS, Grp Spectrometr Mol & Atmospher GSMA, UMR 7331, BP 1039-51687, Reims 2, France..
    Vastel, Charlotte
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, 9 Av Colonel Roche, F-31028 Toulouse 4, France..
    Vujcic, Veljko
    Astron Observ, Volgina 7, Belgrade 11060, Serbia.;Univ Belgrade, Fac Org Sci, Jove Ilica 33, Belgrade 11000, Serbia..
    Wakelam, Valentine
    Univ Bordeaux, CNRS, Lab Astrophys Bordeaux, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France..
    Walton, Nicholas A.
    Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England..
    Zeippen, Claude
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    Zwolf, Carlo Maria
    Univ Paris 06, Sorbonne Univ, UPMC, CNRS,LERMA,Observ Paris,PSL Res Univ, 5 Pl Janssen, F-92190 Meudon, France..
    A Decade with VAMDC: Results and Ambitions2020Ingår i: Atoms, E-ISSN 2218-2004, Vol. 8, nr 4, artikel-id 76Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&M data from more than one database. Finally, we present our vision for the future of VAMDC.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 23.
    Ali, Hasan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Tillämpad materialvetenskap. Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons & Pe, D-52425 Julich, Germany..
    Sathyanath, Sharath Kumar Manjeshwar
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Tillämpad materialvetenskap.
    Tai, Cheuk-Wai
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Rusz, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Uusimaki, Toni
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Hjörvarsson, Björgvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Thersleff, Thomas
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Tillämpad materialvetenskap.
    Single scan STEM-EMCD in 3-beam orientation using a quadruple aperture2023Ingår i: Ultramicroscopy, ISSN 0304-3991, E-ISSN 1879-2723, Vol. 251, artikel-id 113760Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The need to acquire multiple angle-resolved electron energy loss spectra (EELS) is one of the several critical challenges associated with electron magnetic circular dichroism (EMCD) experiments. If the experiments are performed by scanning a nanometer to atomic-sized electron probe on a specific region of a sample, the precision of the local magnetic information extracted from such data highly depends on the accuracy of the spatial registration between multiple scans. For an EMCD experiment in a 3-beam orientation, this means that the same specimen area must be scanned four times while keeping all the experimental conditions same. This is a non-trivial task as there is a high chance of morphological and chemical modification as well as non-systematic local orientation variations of the crystal between the different scans due to beam damage, contamination and spatial drift. In this work, we employ a custom-made quadruple aperture to acquire the four EELS spectra needed for the EMCD analysis in a single electron beam scan, thus removing the above-mentioned complexities. We demonstrate a quantitative EMCD result for a beam convergence angle corresponding to sub-nm probe size and compare the EMCD results for different detector geometries.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Allum, Felix
    et al.
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Burt, Michael
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Amini, Kasra
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Boll, Rebecca
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Kockert, Hansjochen
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Olshin, Pavel K.
    St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia.
    Bari, Sadia
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Bomme, Cedric
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Brausse, Felix
    Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany.
    de Miranda, Barbara Cunha
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Duesterer, Stefan
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Erk, Benjamin
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Geleoc, Marie
    Univ Paris Saclay, LIDYL, CEA, CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France.
    Geneaux, Romain
    Univ Paris Saclay, LIDYL, CEA, CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France.
    Gentleman, Alexander S.
    Univ Oxford, Phys & Theoret Chem Lab, Dept Chem, Oxford OX1 3QZ, England.
    Goldsztejn, Gildas
    Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany.
    Guillemin, Renaud
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Holland, David M. P.
    Daresbury Lab, Warrington WA4 4AD, Cheshire, England.
    Ismail, Iyas
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Johnsson, Per
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Journel, Loic
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Kuepper, Jochen
    Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Dept Chem, Martin Luther King Pl 6, D-20146 Hamburg, Germany.
    Lahl, Jan
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Lee, Jason W. L.
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Maclot, Sylvain
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Mackenzie, Stuart R.
    Univ Oxford, Phys & Theoret Chem Lab, Dept Chem, Oxford OX1 3QZ, England.
    Manschwetus, Bastian
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Mereshchenko, Andrey S.
    St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia.
    Mason, Robert
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Palaudoux, Jerome
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Piancastelli, Maria Novella
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Penent, Francis
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Rompotis, Dimitrios
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany;European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Rouzee, Arnaud
    Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany.
    Ruchon, Thierry
    Univ Paris Saclay, LIDYL, CEA, CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France.
    Rudenko, Artem
    Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA.
    Savelyev, Evgeny
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Simon, Marc
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Schirmel, Nora
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Stapelfeldt, Henrik
    Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
    Techert, Simone
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany;Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany;Univ Gottingen, Inst Xray Phys, D-37077 Gottingen, Germany.
    Travnikova, Oksana
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Trippel, Sebastian
    Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Underwood, Jonathan G.
    UCL, Dept Phys & Astron, London WC1E 6BT, England.
    Vallance, Claire
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Wiese, Joss
    Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Dept Chem, Martin Luther King Pl 6, D-20146 Hamburg, Germany.
    Ziaee, Farzaneh
    Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA.
    Brouard, Mark
    Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England.
    Marchenko, Tatiana
    Sorbonne Univ, LCPMR, CNRS, F-75005 Paris, France.
    Rolles, Daniel
    Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA.
    Coulomb explosion imaging of CH3I and CH2CII photodissociation dynamics2018Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 149, nr 20, artikel-id 204313Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The photodissociation dynamics of CH3I and CH2CII at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815nmprobe pulse. Fragment ion momenta over a widem/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

  • 25.
    Alves, Gabriel O.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Instituto de Fiısica da Universidade de Sao Paulo, Brazil.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kvantmateriens teori.
    Time-optimal holonomic quantum computation2022Ingår i: Physical review A : covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, Vol. 106, artikel-id 032406Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A three-level system can be used in a Λ-type configuration in order to construct a universal set of quantum gates through the use of non-Abelian non-adiabatic geometrical phases. Such construction allows for high- speed operation times which diminish the effects of decoherence. This might be, however, accompanied by a breakdown of the validity of the rotating wave approximation (RWA) due to the comparable time scale between counter rotating terms and pulse length, which greatly affects the dynamics. Here, we investigate the trade- off between dissipative effects and the RWA validity, obtaining the optimal regime for the operation of the holonomic quantum gates.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Ammari, Habib
    et al.
    Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland.
    Fitzpatrick, Brian
    Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland.
    Orvehed Hiltunen, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Yu, Sanghyeon
    Swiss Fed Inst Technol, Dept Math, CH-8092 Zurich, Switzerland.
    Subwavelength Localized Modes for Acoustic Waves in Bubbly Crystals With a Defect2018Ingår i: SIAM Journal on Applied Mathematics, ISSN 0036-1399, E-ISSN 1095-712X, Vol. 78, nr 6, s. 3316-3335Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ability to control wave propagation is of fundamental interest in many areas of physics. Photonic and phononic crystals have proved very useful for this purpose but, because they are based on Bragg interferences, these artificial media require structures with large dimensions. In [Ammari et al., J. Differential Equations, 263 (2017), pp. 5610-5629], it has been proved that a subwavelength bandgap opening occurs in bubble phononic crystals. To demonstrate the opening of a subwavelength phononic bandgap, a periodic arrangement of bubbles is considered and their subwavelength Minnaert resonance is exploited. In this paper, this subwavelength bandgap is used to demonstrate cavities, very similar to those obtained in photonic and phononic crystals, albeit of deeply subwavelength dimensions. The key idea is to increase the size of a single bubble inside the crystal, thus creating a defect. The goal is then to analytically and numerically show that this crystal has a localized eigenmode close to the defect bubble.

  • 27.
    Andersson, Egil
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Mjukröntgenfysik.
    Multi-Electron Coincidence Studies of Atoms and Molecules2010Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    This thesis concerns multi-ionization coincidence measurements of atoms and small molecules using a magnetic bottle time-of-flight (TOF) spectrometer designed for multi-electron coincidence studies. Also, a time-of-flight mass spectrometer has been used together with the TOF electron  spectrometer for electron-ion coincidence measurements. The multi-ionization processes have been studied by employing a pulsed discharge lamp in the vacuum ultraviolet spectral region and synchrotron radiation in the soft X-ray region. The designs of the spectrometers are described in some detail, and several timing schemes suitable for the light sources mentioned above are presented.

    Studies have been performed on krypton, molecular oxygen, carbon disulfide and a series of alcohol molecules. For the latter, double ionization spectra have been recorded and new information has been obtained on the dicationic states. A recently found rule-of-thumb  and quantum chemical calculations have been used to quantify the effective distance of the two vacancies in the dications of these molecules.

    For Kr, O2, and CS2, single-photon core-valence spectra have been obtained at the synchrotron radiation facility BESSY II in Berlin and interpreted on the basis of quantum chemical calculations. These spectra show a remarkable similarity to conventional valence photoelectron spectra.

    Spectra of triply charged ions were recorded, also at BESSY II, for Kr and CS2 by measuring, in coincidence, all three electrons ejected. The complex transition channels leading to tricationic states were mapped in substantial detail for Kr. It was found that for 3d-ionized krypton, the tricationic states are dominantly populated by cascade Auger decays via distinct intermediate states whose energies have been determined. The triple ionization spectra of CS2 from the direct double Auger effect via S2p, S2s and C1s hole states contain several resolved features and show selectivity based on the initial charge localisation and on the identity of the initial state.

    Delarbeten
    1. Multielectron coincidence study of the double Auger decay of 3d-ionized krypton
    Öppna denna publikation i ny flik eller fönster >>Multielectron coincidence study of the double Auger decay of 3d-ionized krypton
    Visa övriga...
    2010 (Engelska)Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 82, nr 4, s. 043418-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Multielectron coincidence data for triple ionization of krypton have been recorded above the 3d ionization threshold at two photon energies (140 and 150 eV). Three principal transition pathways have been observed, two involving double Auger transitions from Kr+, and one involving single Auger transitions from Kr2+ created by direct single-photon double ionization. The decay of the 3d(9) D-2(5/2,3/2) states in Kr+ has been analyzed in some detail and is found to be strongly dominated by cascade processes where two electrons with well-defined energies are emitted. The decay paths leading to the 4s(2)4p(3) S-4, D-2, and P-2 states of Kr3+ are analyzed and energies of seven intermediate states in Kr2+ are given. A preliminary investigation of the decay paths from Kr+ 3d (9)4p(5)nl shake-up states has also been carried out.

    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-122568 (URN)10.1103/PhysRevA.82.043418 (DOI)000283114900005 ()
    Tillgänglig från: 2010-04-14 Skapad: 2010-04-14 Senast uppdaterad: 2017-12-12Bibliografiskt granskad
    2. Formation of Kr3+ via core-valence doubly ionized intermediate states
    Öppna denna publikation i ny flik eller fönster >>Formation of Kr3+ via core-valence doubly ionized intermediate states
    Visa övriga...
    2012 (Engelska)Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 85, nr 3, s. 032502-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The time-of-flight photoelectron-photoion coincidence technique has been used to study single-photon 3d(9)4p(5) core-valence double ionization of Kr and subsequent Auger decay to triply charged states associated with the 4s(2)4p(3) and 4s(1)4p(4) configurations. The photon energy used was h nu = 150 eV. Multiconfiguration Dirac-Fock calculations were performed both for the doubly ionized intermediate states and the triply ionized final states. The intermediate states of Kr2+ are observed between 120 and 125 eV, whereas the final states of Kr3+ are observed between 74- and 120-eV ionization energy. Assignments of all structures are made based on the present numerical results. The calculated Auger rates give a detailed explanation of the relative line strengths observed.

    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-172032 (URN)10.1103/PhysRevA.85.032502 (DOI)000301104400014 ()
    Tillgänglig från: 2012-04-02 Skapad: 2012-04-01 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
    3. Double photoionization of alcohol molecules
    Öppna denna publikation i ny flik eller fönster >>Double photoionization of alcohol molecules
    Visa övriga...
    2009 (Engelska)Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 80, nr 3, s. 032516-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The double valence photoionization spectra of methanol, ethanol, and n-propyl alcohol have been recorded using a time-of-flight photoelectron-photoelectron coincidence technique. The spectra show a well-defined onset followed by broad rounded bands. The lowest vertical double ionization energies have been determined for all molecules and are found to be 32.1, 29.6, and 28.2 eV, respectively. These energies have been applied along with single ionization energies from conventional photoelectron spectra to investigate a recently derived rule of thumb for determination of the lowest double ionization energy in molecules. Many-electron ab initio calculations have been performed on the dicationic ground states in good agreement with the experimental values. For methanol, also excited dicationic states have been calculated up to about 40 eV and used for a detailed interpretation of the experimental spectrum.

    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-114304 (URN)10.1103/PhysRevA.80.032516 (DOI)000270383900088 ()
    Tillgänglig från: 2010-02-12 Skapad: 2010-02-12 Senast uppdaterad: 2017-12-12Bibliografiskt granskad
    4. Single-photon core-valence double ionization of molecular oxygen
    Öppna denna publikation i ny flik eller fönster >>Single-photon core-valence double ionization of molecular oxygen
    Visa övriga...
    2008 (Engelska)Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 78, nr 2, s. 023409-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Single-photon core-valence double ionization of molecular oxygen has been studied using a magnetic bottle time-of-flight electron coincidence spectrometer. The K-1V-1 double ionization electron spectrum of O-2 is reported and is assigned with the aid of ab initio calculations. A direct comparison of the core-valence double ionization electron spectra with the conventional valence band photoelectron spectrum is made. The lowest core-valence double ionization energy is found to be 571.6 eV and is associated with a (3)Pi dicationic state.

    Nyckelord
    Autoionization, photoionization, and photodetachment, Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors, Electronic excitation and ionization of molecules; intermediate molecular states
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-107900 (URN)10.1103/PhysRevA.78.023409 (DOI)000259263500009 ()
    Anmärkning
    Part BTillgänglig från: 2009-09-01 Skapad: 2009-08-31 Senast uppdaterad: 2017-12-13Bibliografiskt granskad
    5. Core-valence double photoionization of the CS2 molecule
    Öppna denna publikation i ny flik eller fönster >>Core-valence double photoionization of the CS2 molecule
    Visa övriga...
    2010 (Engelska)Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 133, nr 9, s. 094305-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Double photoionization spectra of the CS2 molecule have been recorded using the TOF-PEPECO technique in combination with synchrotron radiation at the photon energies h nu=220, 230, 240, 243, and 362.7 eV. The spectra were recorded in the S 2p and C 1s inner-shell ionization regions and reflect dicationic states formed out of one inner-shell vacancy and one vacancy in the valence region. MCSCF calculations were performed to model the energies of the dicationic states. The spectra associated with a S 2p vacancy are well structured and have been interpreted in some detail by comparison to conventional S 2p and valence photoelectron spectra. The lowest inner-shell-valence dicationic state is observed at the vertical double ionization energy 188.45 eV and is associated with a (2p(3/2))(-1)(2 pi(g))(-1) double vacancy. The spectrum connected to the C 1s vacancy shows a distinct line at 310.8 eV, accompanied by additional broad features at higher double ionization energies. This line is associated with a (C 1s)(-1)(2 pi(g))(-1) double vacancy.

    Nyckelord
    carbon compounds, inner-shell ionisation, molecule-photon collisions, photoionisation, SCF calculations
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-122570 (URN)10.1063/1.3469812 (DOI)000281742900011 ()
    Tillgänglig från: 2010-04-20 Skapad: 2010-04-14 Senast uppdaterad: 2022-01-28Bibliografiskt granskad
    6. Spectra of the triply charged ion CS[sub 2][sup 3+] and selectivity in molecular Auger effects
    Öppna denna publikation i ny flik eller fönster >>Spectra of the triply charged ion CS[sub 2][sup 3+] and selectivity in molecular Auger effects
    Visa övriga...
    2010 (Engelska)Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 132, nr 10, s. 104311-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Spectra of triply charged carbon disulphide have been obtained by measuring, in coincidence, all three electrons ejected in its formation by photoionization. Measurements of the CS23+ ion in coincidence with the three electrons identify the energy range where stable trications are formed. A sharp peak in this energy range is identified as the 2Π ground state at 53.1±0.1 eV, which is the lowest electronic state according to ab initio molecular orbital calculations. Triple ionization by the double Auger effect is provisionally divided, on the basis of the pattern of energy sharing between the two Auger electrons into contributions from direct and cascade Auger processes. The spectra from the direct double Auger effect via S 2p, S 2s, and C 1s hole states contain several resolved features and show selectivity based on the initial charge localization and on the identity of the initial state. Triple ionization spectra from single Auger decay of S 2p -based core-valence states CS22+ show retention of the valence holes in this Auger process. Related ion-electron coincidence measurements give the triple ionization yields and the breakdown patterns in triple photoionization at selected photon energies from 90 eV to above the inner shell edges.

    Nyckelord
    ab initio calculations, Auger effect, carbon compounds, molecule-photon collisions, orbital calculations, photoionisation, positive ions, time of flight spectra
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:uu:diva-121766 (URN)10.1063/1.3352549 (DOI)000275589700025 ()
    Tillgänglig från: 2010-03-30 Skapad: 2010-03-30 Senast uppdaterad: 2022-01-28Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 28.
    Andersson, J.
    et al.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden.
    Beerwerth, R.
    Helmholtz Inst Jena, D-07743 Jena, Germany;Friedrich Schiller Univ Jena, Theoret Phys Inst, D-07743 Jena, Germany.
    Roos, A. Hult
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden.
    Squibb, R. J.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden.
    Singh, R.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden.
    Zagorodskikh, Sergey
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden.
    Talaee, O.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden;Univ Oulu, Nano & Mol Syst Res Unit, POB 3000, FI-90014 Oulu, Finland.
    Koulentianos, D.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden;UPMC Univ Paris 6, Sorbonne Univ, UMR7614, Lab Chim Phys Matiere & Rayonnement, F-75005 Paris, France.
    Eland, J. H. D.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden;Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England.
    Fritzsche, S.
    Helmholtz Inst Jena, D-07743 Jena, Germany;Friedrich Schiller Univ Jena, Theoret Phys Inst, D-07743 Jena, Germany.
    Feifel, R.
    Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41258 Gothenburg, Sweden.
    Auger decay of 4d inner-shell holes in atomic Hg leading to triple ionization2017Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 96, nr 1, artikel-id 012505Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Formation of triply ionized states upon the creation of 4d inner-shell holes in atomic Hg is investigated by using synchrotron radiation of 730 eV photon energy and a versatile multielectron coincidence detection technique in combination with multiconfiguration Dirac-Fock calculations. By carefully selecting Coster-Kronig electrons detected only in coincidence with a 4d photoelectron, the Coster-Kronig spectrum has been extracted and the corresponding branching ratios of the 4d hole have been determined. The results are found to differ from previously established experimental ratios based on electron impact ionization but to agree now better with theory. We also present an Auger cascade analysis of pathways leading to triply ionized states of atomic Hg upon removal of a 4d inner-shell electron.

  • 29.
    Andersson, J.
    et al.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden.
    Zagorodskikh, Sergey
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden;.
    Roos, A. Hult
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden.
    Talaee, O.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden;Univ Oulu, Nano & Mol Syst Res Unit, POB 3000, FI-90014 Oulu, Finland.
    Squibb, R. J.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden.
    Koulentianos, D.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden;Sorbonne Univ, Lab Chim Phys Matiere & Rayonnement, CNRS, F-75005 Paris 05, France.
    Wallner, M.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden.
    Zhaunerchyk, V
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden.
    Singh, R.
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel.
    Eland, J. H. D.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden;Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England.
    Rost, J. M.
    Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany.
    Feifel, R.
    Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden.
    Parametrization of energy sharing distributions in direct double photoionization of He2019Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 9, artikel-id 17883Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present experimental results on the characteristic sharing of available excess energy, ranging from 11-221 eV, between two electrons in single-photon direct double ionization of He. An effective parametrization of the sharing distributions is presented along with an empirical model that describes the complete shape of the distribution based on a single experimentally determinable parameter. The measured total energy sharing distributions are separated into two distributions representing the shake-off and knock-out parts by simulating the sharing distribution curves expected from a pure wave collapse after a sudden removal of the primary electron. In this way, empirical knock-out distributions are extracted and both the shake-off and knock-out distributions are parametrized. These results suggest a simple method that can be applied to other atomic and molecular systems to experimentally study important aspects of the direct double ionization process.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 30.
    Andersson, T.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Zhang, C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Björneholm, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Mikkela, M-H
    Oulu Univ, Dept Phys Sci, Box 3000, FI-90014 Oulu, Finland..
    Jankala, K.
    Oulu Univ, Dept Phys Sci, Box 3000, FI-90014 Oulu, Finland..
    Anin, D.
    Oulu Univ, Dept Phys Sci, Box 3000, FI-90014 Oulu, Finland..
    Urpelainen, S.
    Oulu Univ, Dept Phys Sci, Box 3000, FI-90014 Oulu, Finland..
    Huttula, M.
    Oulu Univ, Dept Phys Sci, Box 3000, FI-90014 Oulu, Finland..
    Tchaplyguine, M.
    Lund Univ, Max Lab, Box 118, SE-22363 Lund, Sweden..
    Electronic structure transformation in small bare Au clusters as seen by x-ray photoelectron spectroscopy2017Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 50, nr 1, artikel-id 015102Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Free bare gold clusters in the size range from few tens to few hundred atoms (<= 1 nm dimensions) have been produced in a beam, and the size-dependent development of their full valence band including the 5d and 6s parts has been mapped 'on the fly' by synchrotron-based photoelectron spectroscopy. The Au 4f core level has been also probed, and the cluster-specific Au 4f ionization energies have been used to estimate the cluster size. The recorded in the present work valence spectra of the small clusters are compared with the spectra of the large clusters (N similar to 10(3)) created by us using a magnetron-based gas aggregation source. The comparison shows a substantially narrower 5d valence band and the decrease in its splitting for gold clusters in the size range of few hundred atoms and below. Our DFT calculations involving the pseudopotential method show that the 5d band width of the ground state increases with the cluster size and by the size N = 20 becomes comparable with the experimental width of the valence photoelectron spectrum. Similar to the earlier observations on supported clusters we interpret our experimental and theoretical results as due to the undercoordination of a large fraction of atoms in the clusters with N similar to 10(2) and below. The consequences of such electronic structure of small gold clusters are discussed in connection with their specific physical and chemical properties related to nanoplasmonics and nanocatalysis.

  • 31.
    Andreasson, Jakob
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Iwan, Bianca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hantke, Max
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Rath, Asawari
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Ekeberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Maia, Filipe R. N. C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Barty, Anton
    Chapman, Henry N.
    Bielecki, Johan
    Abergel, C.
    Seltzer, V.
    Claverie, J.-M.
    Svenda, M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Time of Flight Mass Spectrometry to Monitor Sample Expansion in Flash Diffraction Studies on Single Virus ParticlesManuskript (preprint) (Övrigt vetenskapligt)
  • 32.
    André, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Benchmarking Physical Properties of Water Models2019Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [sv]

      Vatten är en av de fundamentala byggstenarna för liv, därmed är det även fundamentalt för biologi, kemi och delar av fysiken. Att förstå hur vatten beter sig och interagerar är en stor fråga inom dessa tre grenar av vetenskap. Med molekyldynamik går det att utföra numeriska simuleringar som kan användas som hjälpmedel för att bygga en djupare förståelse för riktigt vatten. I den här uppsatsen så har molekyldynamik använts till att simulera vanliga rigida 3 punkts parametiseringar av vatten för att se hur bra de kan replikera vissa egenskaper som funktioner av temperatur. Simuleringen är gjord med hjälp av molekyldynamik programet GROMACS som ger en fullständig uppsättning verktyg för att simulera och analysera molekylsystem. Alla simuleringar och analys är automatiserat med ett pythonprogram och en fil för parametrar. De allra flesta modeller följer liknande trender och är giltiga inom små temperaturintervall.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    André, Tomas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik.
    Dawod, Ibrahim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik. European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.
    Cardoch, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik.
    Caleman, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kemisk och biomolekylär fysik. Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85 DE-22607 Hamburg, Germany.
    Macromolecule classification using X-ray laser induced fragmentation simulated with hybrid Monte Carlo/Molecular DynamicsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    We have developed a hybrid Monte Carlo and classical molecular dynamics code to follow the ultrafast atomic dynamics in biological macromolecules induced by a femtosecond X-ray laser. Our model for fragmentation shows good qualitative agreement with ab-initio simulations of small molecules, while being computationally faster.  We applied the code for macromolecules and simulated the Coulomb explosion dynamics due to the fast ionization in six proteins with different physical properties. The trajectories of the ions are followed and projected onto a detector, where the particular pattern depends on the protein, providing a unique footprint. We utilize algorithms such as principal component analysis  and t-distributed stochastic neighbor embedding to classify the fragmentation pattern. The results show that the classification algorithms are able to separate the explosion patterns into distinct groups. We envision that this method could be used to provide additional class information, like particle mass or shape, in structural determination experiments using X-ray lasers.

  • 34.
    André, Tomas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kvantmateriens teori.
    Dark path holonomic qudit computation2022Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 106, nr 6, artikel-id 062402Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nonadiabatic holonomic quantum computation is a method used to implement high-speed quantum gates with non-Abelian geometric phases associated with paths in state space. Due to their noise tolerance, these phases can be used to construct error resilient quantum gates. We extend the holonomic dark path qubit scheme in [M.-Z. Ai et al., Fundam. Res. 2, 661 (2022)] to qudits. Specifically, we demonstrate one- and two-qudit universality by using the dark path technique. Explicit qutrit (d = 3) gates are demonstrated and the scaling of the number of loops with the dimension d is addressed. This scaling is linear and we show how any diagonal qudit gate can be implemented efficiently in any dimension.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Branching Ratios for the Dissociative Recombination of Hydrocarbon Ions2005Konferensbidrag (Refereegranskat)
  • 36.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Branching ratios for the dissociative recombination of hydrocarbon ions2005Ingår i: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596Artikel i tidskrift (Refereegranskat)
  • 37.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Branching Ratios for the Dissociative Recombination of Hydrocarbon Ions. I: The case of C4H9+ and C4H5+2003Ingår i: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798Artikel i tidskrift (Refereegranskat)
  • 38.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Branching Ratios for the Dissociative Recombination of Hydrocarbon Ions. II The Cases of C4Hn+ (n=1-9)2004Ingår i: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798Artikel i tidskrift (Refereegranskat)
  • 39.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Branching Ratios for the Dissociative Recombination of Hydrocarbon Ions. III: The case of C3Hn+ (n=1-8)2004Ingår i: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798Artikel i tidskrift (Refereegranskat)
  • 40.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Dissociative recombination of rare gas hydride ions: I. NeH+2005Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455Artikel i tidskrift (Refereegranskat)
  • 41.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Rate constants and branching ratios for the dissociative recombination of C3D7+ and C4D9+2005Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690Artikel i tidskrift (Refereegranskat)
  • 42.
    Angelova Hamberg, Gergana
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    The Dissociative Recombination of CF3+2004Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455Artikel i tidskrift (Refereegranskat)
  • 43. Apell, S. P.
    et al.
    Hanson, G. W.
    Hägglund, Carl
    epartment of Chemical Engineering, Stanford University, USA.
    High optical absorption in grapheneManuskript (preprint) (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    file
  • 44.
    Araujo, Rafael B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Appl Mat Phys, Dept Mat & Engn, S-10044 Stockholm, Sweden..
    Evaluating bulk Nb2O2F3 for Li-battery electrode applications2016Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, nr 5, s. 3530-3535Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This investigation has the primary objective of elucidating the lithium intercalation process in the crystal structure of a new niobium oxyfluoride compound Nb2O2F3. The framework of the density functional theory was applied in a generalized gradient approximation together with the hybrid functional method. It is revealed that lithium atoms intercalate in this material in a maximum concentration of one Li atom per formula unit forming LiNb2O2F3. Moreover, octahedral positions in between the layers of Nb-O-F appear as the Li preferred occupancy resulting in a structural volume expansion of only 5%. Electronic structure evolution with the insertion of lithium displays a transformation from semi-conductor to metal when half of the lithium atoms are added. This transformation occurs due to a symmetry break induced by the transition from the + 8 to + 7 oxidation state of half of the Nb2 dimers. Then, after full lithiation the symmetry is recovered and the material becomes a semiconductor again with a band gap amounting to 1 eV. The evaluated average deintercalation potential reaches 1.29 V vs. Li/Li+ with activation energy for lithium ion migration of 0.79 eV. The computed low potential of the redox reaction Nb-2(8+) to Nb-2(7+) includes niobium oxyfluoride in the map of possible materials for the anode application of Li-ion batteries.

  • 45.
    Arjmandi-Tash, Hadi
    et al.
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Bellunato, Amedeo
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Wen, Chenyu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Olsthoorn, Rene C.
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Scheicher, Ralph H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Zhang, Shi-Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Schneider, Gregory F.
    Leiden Univ, Leiden Inst Chem, Fac Sci, NL-2333 CC Leiden, Netherlands..
    Zero-Depth Interfacial Nanopore Capillaries2018Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 9, artikel-id 1703602Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-fidelity analysis of translocating biomolecules through nanopores demands shortening the nanocapillary length to a minimal value. Existing nanopores and capillaries, however, inherit a finite length from the parent membranes. Here, nanocapillaries of zero depth are formed by dissolving two superimposed and crossing metallic nanorods, molded in polymeric slabs. In an electrolyte, the interface shared by the crossing fluidic channels is mathematically of zero thickness and defines the narrowest constriction in the stream of ions through the nanopore device. This novel architecture provides the possibility to design nanopore fluidic channels, particularly with a robust 3D architecture maintaining the ultimate zero thickness geometry independently of the thickness of the fluidic channels. With orders of magnitude reduced biomolecule translocation speed, and lowered electronic and ionic noise compared to nanopores in 2D materials, the findings establish interfacial nanopores as a scalable platform for realizing nanofluidic systems, capable of single-molecule detection.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Arnalds, Unnar
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Hase, Thomas
    University of Warwick.
    Papaioannou, Evangelos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Raanaei, Hossein
    Persian Gulf University.
    Abrudan, Radu
    Ruhr-Universitat Bochum.
    Charlton, Timothy
    ISIS, Rutherford Appleton Laboratory.
    Langridge, Sean
    ISIS, Rutherford Appleton Laboratory.
    Hjörvarsson, Björgvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    X-ray resonant magnetic scattering from patterned multilayers2012Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, nr 6, s. 064426-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on x-ray resonant magnetic scattering from laterally patterned arrays of amorphous Co68Fe24Zr8/Al2O3 multilayers. The arrays are composed of circular and ellipsoidal elements which display distinct individual magnetic responses enabling the investigation of the dependence of the observed magnetization on the scattering condition. We focus our attention to special points in reciprocal space, relating to the lateral and perpendicular structure of the samples, thereby revealing the magnetic structure of the multilayered arrays. This allows a comparison of the observed magnetization under different scattering conditions to magneto-optical measurements. The scattering data are supported by micromagnetic simulations which further enhance our understanding of the intricate charge and magnetic scattering from three dimensional patterns.

  • 47.
    Arul Murugan, N.
    et al.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Theoret Chem & Biol, S-10691 Stockholm, Sweden.
    Zalesny, Robert
    Wroclaw Univ Sci & Technol, Fac Chem, Dept Phys & Quantum Chem, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland.
    Ågren, Hans
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Theoret Chem & Biol, S-10691 Stockholm, Sweden.
    Unusual binding-site-specific photophysical properties of a benzothiazole-based optical probe in amyloid beta fibrils2018Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 31, s. 20334-20339Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Optical imaging of amyloid fibrils serves as a cost-effective route for the diagnosis of Alzheimer-like conformational diseases. However{,} the challenge here is to optimize the binding affinity and photophysical properties of the optical imaging agents in a way specific to certain types of amyloids. In a few occasions it is shown that novel optical imaging agents can be designed to bind to a particular type of amyloid fibril with larger binding affinity and specificity. There is also a recent report on photoluminescent polythiophenes which display photophysical properties that can be used to distinguish the variants or subtypes of amyloids (J. Rasmussen et al.{,} Proc. Natl. Acad. Sci. U. S. A.{,} 2017{,} 114(49){,} 13018–13023). Based on a multiscale modeling approach{,} here{,} we report on the complementary aspect that the photophysical properties of a benzothiazole based optical probe (referred to as BTA-3) can be specific to the binding sites in the same amyloid fibrils and we attribute this to its varying electronic structure in different sites. As reported experimentally from competitive binding assay studies for many amyloid staining molecules and tracers{,} we also show multiple binding sites in amyloid fibrils for this probe. In particular{,} BTA-3 displayed a red-shift in its low-frequency absorption band only in site-4{,} a surface site of amyloid fibrils when compared to the spectra in water solvent. In the remaining sites{,} it exhibited a less significant blue shift for the same absorption band.

    Ladda ner fulltext (pdf)
    fulltext
  • 48.
    Arvizu, Miguel
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Wen, Rui-Tao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Primetzhofer, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Klemberg-Sapieha, Jolanta Ewa
    Martinu, Ludvik
    Niklasson, Gunnar A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Granqvist, Claes-Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Galvanostatic ion de-trapping rejuvenates oxide thin films2015Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 48, s. 26387-26390Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvano-static treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li+ trapping associated with the degradation of the EC properties and, importantly, that Li+ detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li+ detrapping.

    Ladda ner fulltext (pdf)
    fulltext
  • 49.
    Asaki, Yoshiharu
    et al.
    Joint ALMA Observ, Alonso Cordova 3107, Santiago 7630355, Vitacura, Chile.;Natl Astron Observ Japan, Abedules 3085 Oficina 701, Santiago 7630414, Chile.;SOKENDAI, Grad Univ Adv Studies, Sch Phys Sci, Dept Astron Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan..
    Maud, Luke T.
    ESO Headquarters, Karl Schwarzchild Str 2, D-85748 Garching, Germany.;Leiden Univ, Allegro, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands..
    Francke, Harold
    Joint ALMA Observ, Alonso Cordova 3107, Santiago 7630355, Vitacura, Chile..
    Nagai, Hiroshi
    Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan..
    Petry, Dirk
    ESO Headquarters, Karl Schwarzchild Str 2, D-85748 Garching, Germany..
    Fomalont, Edward B.
    Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA..
    Humphreys, Elizabeth
    Joint ALMA Observ, Alonso Cordova 3107, Santiago 7630355, Vitacura, Chile.;ESO Vitacura, Alonso Cordova 3107, Santiago, Chile..
    Richards, Anita M. S.
    Univ Manchester, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Manchester M13 9PL, England..
    Wong, K. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Inst Radioastron Millimetr, IRAM ARC Node, 300 Rue Piscine, F-38406 Saint-martin, France..
    Dent, William
    Joint ALMA Observ, Alonso Cordova 3107, Santiago 7630355, Vitacura, Chile..
    Hirota, Akihiko
    Joint ALMA Observ, Alonso Cordova 3107, Santiago 7630355, Vitacura, Chile.;Natl Astron Observ Japan, Abedules 3085 Oficina 701, Santiago 7630414, Chile..
    Fernandez, Jose Miguel
    Lowell Observ, 1400 Mars Hill Rd, Flagstaff, AZ 86001 USA..
    Takahashi, Satoko
    Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan..
    Hales, Antonio S.
    Joint ALMA Observ, Alonso Cordova 3107, Santiago 7630355, Vitacura, Chile.;Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA..
    ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep2023Ingår i: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 958, nr 1, artikel-id 86Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Atacama Large Millimeter/submillimeter Array (ALMA) was used in 2021 to image the carbon-rich evolved star R Lep in Bands 8-10 (397-908 GHz) with baselines up to 16 km. The goal was to validate the calibration, using band-to-band (B2B) phase referencing with a close phase calibrator J0504-1512, 1.degrees 2 from R Lep in this case, and the imaging procedures required to obtain the maximum angular resolution achievable with ALMA. Images of the continuum emission and the hydrogen cyanide (HCN) maser line at 890.8 GHz, from the J = 10-9 transition between the (1110) and (0400) vibrationally excited states, achieved angular resolutions of 13, 6, and 5 mas in Bands 8-10, respectively. Self-calibration (self-cal) was used to produce ideal images to compare with the B2B phase referencing technique. The continuum emission was resolved in Bands 9 and 10, leaving too little flux for the self-cal of the longest baselines, so these comparisons are made at coarser resolution. Comparisons showed that B2B phase referencing provided phase corrections sufficient to recover 92%, 83%, and 77% of the ideal image continuum flux densities. The HCN maser was sufficiently compact to obtain self-cal solutions in Band 10 for all baselines (up to 16 km). In Band 10, B2B phase referencing as compared to the ideal images recovered 61% and 70% of the flux density for the HCN maser and continuum, respectively.

    Ladda ner fulltext (pdf)
    fulltext
  • 50.
    Augustsson, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Soft X-ray Emission Spectroscopy of Liquids and Lithium Battery Materials2004Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode, which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools.

    This thesis addresses the electronic structure of liquids and lithium battery materials using resonant inelastic X-ray scattering (RIXS) at high brightness synchrotron radiation sources. The electronic structure of battery electrodes has been probed, before and after lithiation, studying the doping of electrons into the host material. The chemical composition of the SEI on cycled graphite electrodes was determined. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and orbital mixing between molecules upon hydrogen bonding. The study of methanol showed the existence of ring and chain formations in the liquid phase and the dominating structures are formed of 6 and 8 molecules. Upon mixing of the two liquids, a segregation at the molecular level was found and the formation of new structures, which could explain the unexpected low increase of the entropy.

    Delarbeten
    1. Solid Electrolyte Interphase on Graphite Li-ion Battery Anodes Studied by Soft X-ray Spectroscopy
    Öppna denna publikation i ny flik eller fönster >>Solid Electrolyte Interphase on Graphite Li-ion Battery Anodes Studied by Soft X-ray Spectroscopy
    Visa övriga...
    2004 Ingår i: Physical Chemistry Chemical Physics, ISSN 1463-9076, Vol. 6, nr 16, s. 4185-4189Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92072 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    2. The electronic structure of LiC6 studied by RIXS
    Öppna denna publikation i ny flik eller fönster >>The electronic structure of LiC6 studied by RIXS
    Visa övriga...
    Manuskript (Övrigt vetenskapligt)
    Identifikatorer
    urn:nbn:se:uu:diva-92073 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17 Senast uppdaterad: 2010-01-13Bibliografiskt granskad
    3. Lithium Ion Insertion in Nanoporous Anatase TiO2 Studied with RIXS
    Öppna denna publikation i ny flik eller fönster >>Lithium Ion Insertion in Nanoporous Anatase TiO2 Studied with RIXS
    Visa övriga...
    2003 Ingår i: Journal of Chemical Physics, ISSN 0021-9606, Vol. 119, nr 7, s. 3983-3987Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92074 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    4. The electronic structure and lithiation of electrodes based on vanadium-oxide nanotubes
    Öppna denna publikation i ny flik eller fönster >>The electronic structure and lithiation of electrodes based on vanadium-oxide nanotubes
    Visa övriga...
    2003 Ingår i: Journal of Applied Physics, ISSN 0021-8979, Vol. 94, nr 8, s. 5083-5087Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92075 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    5. The Redox Behavior of Vanadium Oxide Nanotubes As Studied by X-ray Photoelectron Spectroscopy and Soft X-ray Absorption Spectroscopy
    Öppna denna publikation i ny flik eller fönster >>The Redox Behavior of Vanadium Oxide Nanotubes As Studied by X-ray Photoelectron Spectroscopy and Soft X-ray Absorption Spectroscopy
    Visa övriga...
    2003 Ingår i: Chemistry of Materials, ISSN 0897-4756, Vol. 15, nr 16, s. 3227-3232Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92076 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    6. Li insertion into V6O13 battery cathodes studied by soft x-ray spectroscopies
    Öppna denna publikation i ny flik eller fönster >>Li insertion into V6O13 battery cathodes studied by soft x-ray spectroscopies
    Visa övriga...
    2004 Ingår i: Journal of Applied Physics, ISSN 0021-8979, Vol. 95, nr 11, s. 6444-6449Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92077 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    7. Electronic Structure of Li-inserted V6O13 Battery Cathodes: Rigid Band Behavior and Effects of Hybridization
    Öppna denna publikation i ny flik eller fönster >>Electronic Structure of Li-inserted V6O13 Battery Cathodes: Rigid Band Behavior and Effects of Hybridization
    Visa övriga...
    Ingår i: Applied Physics Letters, ISSN 0003-6951Artikel i tidskrift (Refereegranskat) Submitted
    Identifikatorer
    urn:nbn:se:uu:diva-92078 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    8. X-Ray Emission Spectroscopy of Hydrogen Bonding and Electronic Structure of Liquid Water
    Öppna denna publikation i ny flik eller fönster >>X-Ray Emission Spectroscopy of Hydrogen Bonding and Electronic Structure of Liquid Water
    Visa övriga...
    2002 Ingår i: Physical Review Letters, ISSN 0031-9007, Vol. 89, nr 13, s. 137402-Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92079 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17 Senast uppdaterad: 2011-11-04Bibliografiskt granskad
    9. Local structures of liquid water studied by x-ray emission spectroscopy
    Öppna denna publikation i ny flik eller fönster >>Local structures of liquid water studied by x-ray emission spectroscopy
    Visa övriga...
    2004 Ingår i: Physical Review B (Condensed Matter and Materials Physics -1(II)), ISSN 1098-0121, Vol. 69, s. 024201-Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92080 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17 Senast uppdaterad: 2011-11-04Bibliografiskt granskad
    10. Molecular Structure of Alcohol-water Mixtures
    Öppna denna publikation i ny flik eller fönster >>Molecular Structure of Alcohol-water Mixtures
    Visa övriga...
    2003 Ingår i: Physical Review Letters, ISSN 0031-9007, Vol. 91, nr 15, s. 157401-Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92081 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    11. Resonant soft x-ray emission of solids and liquids
    Öppna denna publikation i ny flik eller fönster >>Resonant soft x-ray emission of solids and liquids
    2004 Ingår i: Journal of Alloys and Compounds, ISSN 0925-8388, Vol. 362, nr 1-2, s. 116-123Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92082 (URN)doi:10.1016/S0925-8388(03)00571-1 (DOI)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    12. Resonant soft-x-ray emission spectroscopy applied to liquids
    Öppna denna publikation i ny flik eller fönster >>Resonant soft-x-ray emission spectroscopy applied to liquids
    2004 Ingår i: AIP Conference Proceedings, ISSN 0094-243X, Vol. 705, nr 1, s. 1066-1070Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92083 (URN)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    13. The molecular structure of alcohol-water mixtures determined by soft-X-ray absorption and emission spectroscopy
    Öppna denna publikation i ny flik eller fönster >>The molecular structure of alcohol-water mixtures determined by soft-X-ray absorption and emission spectroscopy
    Visa övriga...
    2004 Ingår i: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, Vol. 137-140, s. 425-428Artikel i tidskrift (Refereegranskat) Published
    Identifikatorer
    urn:nbn:se:uu:diva-92084 (URN)doi:10.1016/j.elspec.2004.02.094 (DOI)
    Tillgänglig från: 2004-09-17 Skapad: 2004-09-17Bibliografiskt granskad
    14. Dynamics of core-excitations in liquid water
    Öppna denna publikation i ny flik eller fönster >>Dynamics of core-excitations in liquid water