Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
12345 1 - 50 of 240
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ajalloueian, Fatemeh
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Zeiai, S.
    Fossum, M.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    A bedside collagen-PLGA nanofibrous construct for autologous transplantation of minced bladder mucosal2012In: Journal of Tissue Engineering and Regenerative Medicine, ISSN 1932-6254, Vol. 6, no suppl 1, p. 128-128Article in journal (Other academic)
    Abstract [en]

    Introduction: Bladder regeneration using minced bladder mucosa is an alternative to costly and time-consuming conventional in vitro culturing of urothelial cells. In this method, the uroepithelium expands in vivo and the patient body appears as an incubator. With our preliminary successes, designing an appropriate scaffold that supports in vivo cell expansion and surgical handling in a clinical setting was our aim. This study, investigates cell expansion in a hybrid construct of collagen/poly (lactic-co-glycolide)(PLGA).

    Materials and methods: An electrospun PLGA mat was placed on a semi-gel collagen inside a mold and covered with a second collagen layer. After gel formation, minced particles of pig bladder mucosa were seeded on the hybrid construct and then processed by plastic compression (PC). The scaffolds were incubated for 2, 4 and 6 weeks in vitro for further studies.

    Results: Tensile tests show an increase in tensile strength of 0.6 ± 0.1 MPa in PC collagen to 3.6 ± 1.1 MPa in hybrid construct. Morphological studies, histological staining and SEM show that the construct has kept its integrity during the time and proliferated urothelial cells have reached confluence after 4 weeks and a multi-layered urothelium after 6 weeks.

    Conclusion: We have designed a mechanically robust scaffold that permits surgical handling and tissue expansion in vivo. The construct is easy-to-use for clinical application in an ordinary surgical operating theater for bladder regeneration.

  • 2.
    Andersson, Edvin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sångeland, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Berggren, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Kühn, Danilo
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Early-Stage Decomposition of Solid Polymer Electrolytes in Li-Metal Batteries2021In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 9, no 39Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 3.
    Andersson, Rassmus
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    See, Jennifer
    Brewer Sci, Rolla, MO 65401 USA..
    Flaim, Tony D.
    Brewer Sci, Rolla, MO 65401 USA..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Designing Polyurethane Solid Polymer Electrolytes for High-Temperature Lithium Metal Batteries2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 1, p. 407-418Article in journal (Refereed)
    Abstract [en]

    Potentially high-performance lithium metal cells in extreme high-temperature electrochemical environments is a challenging but attractive battery concept that requires stable and robust electrolytes to avoid severely limiting lifetimes of the cells. Here, the properties of tailored polyester and polycarbonate diols as the soft segments in polyurethanes are investigated and electrochemically evaluated for use as solid polymer electrolytes in lithium metal batteries. The polyurethanes demonstrate high mechanical stability against deformation at low flow rates and moreover at temperatures up above 100 degrees C, enabled by the hard urethane segments. The results further indicate transferrable ion transport properties of the pure polymers when incorporated as the soft segments in the polyurethanes, offering designing opportunities of the polyurethane by tuning the soft segment ratio and composition. Long-term electrochemical cycling of polyurethane-containing cells in lithium metal batteries at 80 degrees C proves the stability at elevated temperatures as well as the compatibility with lithium metal with stable cycling maintained after 2000 cycles.

    Download full text (pdf)
    fulltext
  • 4.
    Asfaw, Habtom Desta
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Multifunctional Carbon Foams by Emulsion Templating: Synthesis, Microstructure, and 3D Li-ion Microbatteries2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Carbon foams are among the existing electrode designs proposed for use in 3D Li-ion microbatteries. For such electrodes to find applications in practical microbatteries, however, their void sizes, specific surface areas and pore volumes need be optimized. This thesis concerns the synthesis of highly porous carbon foams and their multifunctional applications in 3D microbatteries. The carbon foams are derived from polymers that are obtained by polymerizing high internal phase water-in-oil emulsions (HIPEs).

    In general, the carbonization of the sulfonated polymers yielded hierarchically porous structures with void sizes ranging from 2 to 35 µm and a BET specific surface area as high as 630 m2 g-1. Thermogravimetric and spectroscopic evidence indicated that the sulfonic acid groups, introduced during sulfonation, transformed above 250 oC to thioether (-C-S-) crosslinks which were responsible for the thermal stability and charring tendency of the polymer precursors. Depending on the preparation of the HIPEs, the specific surface areas and void-size distributions were observed to vary considerably. In addition, the pyrolysis temperature could also affect the microstructures, the degree of graphitization, and the surface chemistry of the carbon foams.

    Various potential applications were explored for the bespoke carbon foams. First, their use as freestanding active materials in 3D microbatteries was studied. The carbon foams obtained at 700 to 1500 oC suffered from significant irreversible capacity loss during the initial discharge. In an effort to alleviate this drawback, the pyrolysis temperature was raised to 2200 oC. The resulting carbon foams were observed to deliver high, stable areal capacities over several cycles. Secondly, the possibility of using these structures as 3D current collectors for various active materials was investigated in-depth. As a proof-of-concept demonstration, positive active materials like polyaniline and LiFePO4 were deposited on the 3D architectures by means of electrodeposition and sol-gel approach, respectively. In both cases, the composite electrodes exhibited reasonably high cyclability and rate performance at different current densities. The syntheses of niobium and molybdenum oxides and their potential application as electrodes in microbatteries were also studied. In such applications, the carbon foams served dual purposes as 3D scaffolds and as reducing reactants in the carbothermal reduction process. Finally, a facile method of coating carbon substrates with oxide nanosheets was developed. The approach involved the exfoliation of crystalline VO2 to prepare dispersions of hydrated V2O5, which were subsequently cast onto CNT paper to form oxide films of different thicknesses.

    List of papers
    1. Boosting the thermal stability of emulsion–templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams
    Open this publication in new window or tab >>Boosting the thermal stability of emulsion–templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams
    Show others...
    2016 (English)In: ChemistrySelect, ISSN 2365-6549, Vol. 1, no 4, p. 784-792Article in journal (Refereed) Published
    Abstract [en]

    Hierarchically porous carbon foams with specific surface areas exceeding 600 m2 g−1 can be derived from polystyrene foams that are synthesized via water-in-oil emulsion templating. However, most styrene-based polymers lack strong crosslinks and are degraded to volatile products when heated above 400 oC. A common strategy employed to avert depolymerization is to introduce potential crosslinking sites such as sulfonic acids by sulfonating the polymers. This article unravels the thermal and chemical processes leading up to the conversion of sulfonated high internal phase emulsion polystyrenes (polyHIPEs) to sulfur containing carbon foams. During pyrolysis, the sulfonic acid groups (-SO3H) are transformed to sulfone (-C-SO2-C-) and then to thioether (-C−S-C-) crosslinks. These chemical transformations have been monitored using spectroscopic techniques: in situ IR, Raman, X-ray photoelectron and X-ray absorption near edge structure spectroscopy. Based on thermal analyses, the formation of thioether links is associated with increased thermal stability and thus a substantial decrease in volatilization of the polymers.

    Keywords
    Emulsion-templated polymer, sulfonation, pyrolysis, spectroscopy, carbon foam
    National Category
    Materials Chemistry
    Research subject
    Chemistry with specialization in Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-283174 (URN)10.1002/slct.201600139 (DOI)000395395900026 ()
    Projects
    3D microbatteries
    Available from: 2016-04-11 Created: 2016-04-11 Last updated: 2017-10-30Bibliographically approved
    2. Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries
    Open this publication in new window or tab >>Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries
    2013 (English)In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 1, no 44, p. 13750-13758Article in journal (Refereed) Published
    Abstract [en]

    High surface area carbon foams were prepared and characterized for use in 3D structured batteries. Twopotential applications exist for these foams: firstly as an anode and secondly as a current collector supportfor electrode materials. The preparation of the carbon foams by pyrolysis of a high internal phase emulsionpolymer (polyHIPE) resulted in structures with cage sizes of 25 mm and a surface area enhancement pergeometric area of approximately 90 times, close to the optimal configuration for a 3D microstructuredbattery support. The structure was probed using XPS, SEM, BET, XRD and Raman techniques; revealingthat the foams were composed of a disordered carbon with a pore size in the <100 nm range resultingin a BET measured surface area of 433 m2 g-1. A reversible capacity exceeding 3.5 mA h cm2 at acurrent density of 0.37 mA cm-2 was achieved. SEM images of the foams after 50 cycles showed thatthe structure suffered no degradation. Furthermore, the foams were tested as a current collector bydepositing a layer of polyaniline cathode over their surface. High footprint area capacities of500 mA h cm-2 were seen in the voltage range 3.8 to 2.5 V vs. Li and a reasonable rate performancewas observed.

    Place, publisher, year, edition, pages
    United Kingdom: , 2013
    Keywords
    Carbon foam, High internal phase emulsion polymer, microbattery, 3D microbattery, Lithium ion
    National Category
    Chemical Sciences Materials Chemistry
    Research subject
    Materials Science; Chemistry; Materials Science; Physical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-210659 (URN)10.1039/C3TA12680C (DOI)000326463400009 ()
    Projects
    STEM-VR-Microbattery
    Funder
    Swedish Energy AgencySwedish Research Council
    Available from: 2013-11-12 Created: 2013-11-12 Last updated: 2017-12-06Bibliographically approved
    3. Emulsion-templated graphitic carbon foams with optimum porosity for 3D Li-ion microbatteries
    Open this publication in new window or tab >>Emulsion-templated graphitic carbon foams with optimum porosity for 3D Li-ion microbatteries
    (English)Manuscript (preprint) (Other academic)
    Keywords
    carbon, foam, graphitic, anode, three-dimensional, microbattery, lithium
    National Category
    Polymer Technologies Chemical Process Engineering Materials Chemistry Polymer Chemistry Inorganic Chemistry Physical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-312893 (URN)
    Funder
    Swedish Research Council, 2012–4681StandUp
    Available from: 2017-01-14 Created: 2017-01-14 Last updated: 2017-12-30
    4. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance
    Open this publication in new window or tab >>Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance
    Show others...
    2014 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, no 15, p. 8804-8813Article in journal (Refereed) Published
    Abstract [en]

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.

    Place, publisher, year, edition, pages
    Royal Society of Chemistry: , 2014
    National Category
    Physical Chemistry Polymer Chemistry Materials Chemistry Inorganic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-228630 (URN)10.1039/C4NR01682C (DOI)000339861500051 ()
    Projects
    STEM-VR-Microbattery
    Available from: 2014-07-18 Created: 2014-07-18 Last updated: 2017-12-05Bibliographically approved
    5. Surface-oxidized NbO2 nanoparticles for high performance lithium microbatteries
    Open this publication in new window or tab >>Surface-oxidized NbO2 nanoparticles for high performance lithium microbatteries
    (English)Manuscript (preprint) (Other academic)
    Keywords
    niobium, oxide, nanoparticle, power, energy, carbon, foam, lithium, microbattery
    National Category
    Natural Sciences Inorganic Chemistry Materials Chemistry Physical Chemistry Condensed Matter Physics Materials Engineering Chemical Engineering
    Research subject
    Chemistry with specialization in Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-312894 (URN)
    Projects
    3D Lithium-ion microbattery
    Funder
    Swedish Research Council, 2012–4681StandUp
    Available from: 2017-01-14 Created: 2017-01-14 Last updated: 2017-12-30
    6. A one-step water based strategy for synthesizing hydrated vanadium pentoxide nanosheets from VO2(B) as free-standing electrodes for lithium battery applications
    Open this publication in new window or tab >>A one-step water based strategy for synthesizing hydrated vanadium pentoxide nanosheets from VO2(B) as free-standing electrodes for lithium battery applications
    Show others...
    2016 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 46, p. 17988-18001Article in journal (Refereed) Published
    Abstract [en]

    The synthesis of two dimensional (2D) materials from transition metal oxides, chalcogenides, and carbides mostly involve multiple exfoliation steps in which hazardous solvents and reagents are used. In this study, hydrated vanadium pentoxide (V2O5[middle dot]nH2O) nanosheets with a thickness of a few nanometers were prepared via a facile environmentally friendly water based exfoliation technique. The exfoliation process involved refluxing the precursor, vanadium dioxide (VO2(B)), in water for a few days at 60 [degree]C. The proposed exfoliation mechanism is based on the intercalation/insertion of water molecules into the VO2(B) crystals and the subsequent cleavage of the covalent bonds holding the layers of VO2(B) together. The thermal and chemical analyses showed that the approximate chemical composition of the nanosheets is H0.4V2O5[middle dot]0.55H2O, and the percentage of VV content to that of VIV in the nanosheets is about 80(3)% to 20(3)%. The exfoliated aqueous suspension of the V2O5[middle dot]0.55H2O nanosheets was successfully deposited onto multi-walled carbon nanotube (MW-CNT) paper to form free-standing electrodes with a thickness of the V2O5[middle dot]0.55H2O layer ranging between 45 and 4 [small mu ]m. A series of electrochemical tests were conducted on the electrodes to determine the cyclability and rate capability of lithium insertion into V2O5[middle dot]0.55H2O nanosheets. The electrodes with the thinnest active material coating ([similar]4 [small mu ]m) delivered gravimetric capacities of up to 480 and 280 mA h g-1 when cycled at current densities of 10 and 200 mA g-1, respectively.

    Keywords
    2D materials, vanadium oxides, free-standing, battery, lithium
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-311357 (URN)10.1039/C6TA06571F (DOI)000388505400010 ()
    Funder
    Swedish Research Council, 2012-4681Swedish Energy AgencyBerzelii Centre EXSELENTStandUp
    Available from: 2016-12-24 Created: 2016-12-24 Last updated: 2022-03-21
    Download full text (pdf)
    fulltext
    Download (jpg)
    preview image
  • 5.
    Asfaw, Habtom Desta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Roberts, Matthew R.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Tai, Cheuk-Wai
    Stockholm University.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. DTU.
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance2014In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, no 15, p. 8804-8813Article in journal (Refereed)
    Abstract [en]

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.

  • 6.
    Asfaw, Habtom Desta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tai, C. -W
    Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden.
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries: insight into local structure and interfacial kinetics2020In: Materials Today Energy, ISSN 2468-6069, Vol. 18, article id 100505Article in journal (Refereed)
    Abstract [en]

    Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.

    Download full text (pdf)
    fulltext
  • 7.
    Asfaw, Habtom Desta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tai, Cheuk-Wai
    Stockholm University.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Emulsion-templated graphitic carbon foams with optimum porosity for 3D Li-ion microbatteriesManuscript (preprint) (Other academic)
  • 8.
    Asplund, Basse
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Sperens, Jenny
    Mathisen, Torbjorn
    Hilborn, Jons
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Effects of hydrolysis on a new biodegradable co-polymer2006In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 17, no 6, p. 615-630Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to examine the feasibility of using a new low-modulus biodegradable thermoplastic elastomer for in vivo application as a stent cover. The new polymer, a thermoplastic elastomer, consists of a three-armed co-polymer of poly(lactide)acid (PLLA), poly(trimethylene carbonate) (PTMC) and poly(caprolactone) (PCL). A degradation study was performed in a buffer solution at 37 degrees C for 4 and 6 weeks. The effect of degradation on mechanical properties was studied by stress-strain measurements and explained by using modulated DSC, GPC and mass measurements. A tapered block of PLLA and trimethylene carbonate connecting the crystalline outer part and the inner elastic part was highly susceptible to hydrolysis and caused rapid degradation and subsequent loss of mechanical properties. Random chain scission and homogenous hydrolysis resulted in a loss in mass and molecular weight. After 6 weeks of in vitro hydrolysis the molecular weight had decreased 54% and the elongation-at-break dropped from more than 300% to 90%. A medium free cell seeding study showed that endothelial cells adhered well to the polymeric material. An indicative animal study with the polymer acting as a stent cover showed very low levels of inflammation however, pronounced neointima thickening was observed which was probably due to the premature failure of the material.

  • 9.
    Aulin, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Extracellular Matrix Based Materials for Tissue Engineering2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The extracellular matrix is (ECM) is a network of large, structural proteins and polysaccharides, important for cellular behavior, tissue development and maintenance. Present thesis describes work exploring ECM as scaffolds for tissue engineering by manipulating cells cultured in vitro or by influencing ECM expression in vivo. By culturing cells on polymer meshes under dynamic culture conditions, deposition of a complex ECM could be achieved, but with low yields. Since the major part of synthesized ECM diffused into the medium the rate limiting step of deposition was investigated. This quantitative analysis showed that the real rate limiting factor is the low proportion of new proteins which are deposited as functional ECM. It is suggested that cells are pre-embedded in for example collagen gels to increase the steric retention and hence functional deposition.

    The possibility to induce endogenous ECM formation and tissue regeneration by implantation of growth factors in a carrier material was investigated. Bone morphogenetic protein-2 (BMP-2) is a growth factor known to be involved in growth and differentiation of bone and cartilage tissue. The BMP-2 processing and secretion was examined in two cell systems representing endochondral (chondrocytes) and intramembranous (mesenchymal stem cells) bone formation. It was discovered that chondrocytes are more efficient in producing BMP-2 compared to MSC. The role of the antagonist noggin was also investigated and was found to affect the stability of BMP-2 and modulate its effect. Finally, an injectable gel of the ECM component hyaluronan has been evaluated as delivery vehicle in cartilage regeneration. The hyaluronan hydrogel system showed promising results as a versatile biomaterial for cartilage regeneration, could easily be placed intraarticulary and can be used for both cell based and cell free therapies.

    List of papers
    1. Extracellular matrix-polymer hybrid materials produced in a pulsed-flow bioreactor system
    Open this publication in new window or tab >>Extracellular matrix-polymer hybrid materials produced in a pulsed-flow bioreactor system
    2009 (English)In: Journal of Tissue Engineering and Regenerative Medicine, ISSN 1932-6254, Vol. 3, no 3, p. 188-195Article in journal (Refereed) Published
    Abstract [en]

    Cell adhesion, interaction with material, cell proliferation and the production of an extracellular matrix (ECM) are all important factors determining the successful performance of an engineered scaffold. Scaffold design should aim at creating structures which can guide cells into forming new, functional tissue. In this study, the concept of in situ deposition of ECM by human dermal fibroblasts onto a compliant, knitted poly (ethyleneterephtalate) support is demonstrated, creating in vitro produced ECM polymer hybrid materials for tissue engineering. Comparison of cells cultured under static and dynamic conditions were examined, and the structure and morphology of the materials so formed were evaluated, along with the amount collagen deposited by the seeded cells. In vitro produced ECM polymer hybrid scaffolds could be created in this way, with the dynamic culture conditions increasing ECM deposition. Histological analysis indicated a homogenous distribution of cells in the 1 mm thick scaffold, surrounded by a matrix-like structure. ECM deposition was observed throughout the materials wigh 81.6 µg/cm2 of collagen deposited after 6 weeks. Cell produced bundles of ECM fibres bridged the polymer filaments and anchored cells to the support. These findings open hereto unknown possibilities of producing materials with structure designed by engineering together with biochemical composition given by cells.

    Place, publisher, year, edition, pages
    John Wiley & Sons, Ltd, 2009
    Keywords
    extracellular matrix, scaffold, polymer support, fibroblasts, bioreactor, dynamic culture conditions
    National Category
    Chemical Sciences
    Research subject
    Inorganic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-106096 (URN)10.1002/term.152 (DOI)000265268400003 ()
    Available from: 2009-06-15 Created: 2009-06-15 Last updated: 2022-01-28Bibliographically approved
    2. Bulk collagen incorporation rates into knitted stiff fibre polymer in tissue-engineered scaffolds: the rate-limiting step
    Open this publication in new window or tab >>Bulk collagen incorporation rates into knitted stiff fibre polymer in tissue-engineered scaffolds: the rate-limiting step
    Show others...
    2008 (English)In: Journal of Tissue Engineering and Regenerative Medicine, ISSN 1932-6254, Vol. 2, no 8, p. 507-514Article in journal (Refereed) Published
    Abstract [en]

    Fabrication of tissue-engineered constructs in vitro relies on sufficient synthesis of extracellular matrix (ECM) by cells to form a material suitable for normal function in vivo. Collagen synthesis by human dermal fibroblasts grown in vitro on two polymers, polyethylene terephthalate (PET) and polyglycolic acid (PGA), was measured by high-performance liquid chromatography (HPLC). Cells were either cultured in a dynamic environment, where meshes were loaded onto a pulsing tube in a bioreactor, or in a static environment without pulsing. Collagen synthesis by cells cultured on a static mesh increased by six-fold compared to monolayer culture, and increased by up to a further 5.4-fold in a pulsed bioreactor. However, little of the collagen synthesized was deposited onto the meshes, almost all being lost to the medium. The amount of collagen deposited onto meshes was highest when cells were cultured dynamically on PET meshes (17.6 µg), but deposition still represented only 1.4% of the total synthesized. Although total collagen synthesis was increased by the use of 3D culture and the introduction of pulsing, the results suggest that the limiting factor for fabrication of a tissue-engineered construct within practical timescales is not the amount of collagen synthesized but the quantity retained (i.e. deposited) within the construct during culture. This may be enhanced by systems which promote or assemble true 3D multi-layers of cells.

    Place, publisher, year, edition, pages
    John Wiley & Sons, Ltd., 2008
    Keywords
    collagen synthesis, collagen deposition, tissue engineering, polyethylene terephthalate, 3D culture, bioreactors
    National Category
    Chemical Sciences
    Research subject
    Inorganic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-99347 (URN)10.1002/term.126 (DOI)000262272900007 ()
    Available from: 2009-03-12 Created: 2009-03-12 Last updated: 2022-01-28Bibliographically approved
    3. Comparative studies on BMP-2 processing and secretion in chondrocytes and mesenchymal cells and the effect of noggin
    Open this publication in new window or tab >>Comparative studies on BMP-2 processing and secretion in chondrocytes and mesenchymal cells and the effect of noggin
    (English)Manuscript (preprint) (Other academic)
    Keywords
    bone formation, BMP-2, noggin, chondrocytes, mesenchymal stem cells
    Identifiers
    urn:nbn:se:uu:diva-110746 (URN)
    Available from: 2009-11-24 Created: 2009-11-24
    4. Evaluation of an injectable hyaluronan hydrogel for cartilage regeneration
    Open this publication in new window or tab >>Evaluation of an injectable hyaluronan hydrogel for cartilage regeneration
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Keywords
    hyaluronan, chondrocytes, mesenchymal stem cells, cartilage, injectable, bone morphogenetic protein-2, rabbit model
    Identifiers
    urn:nbn:se:uu:diva-110750 (URN)
    Available from: 2009-11-24 Created: 2009-11-24
    Download full text (pdf)
    FULLTEXT01
  • 10.
    Aulin, Cecilia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Bergman, Kristoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Jensen-Waern, Marianne
    Hedenqvist, Patricia
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Engstrand, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    In situ cross-linkable hyaluronan hydrogel enhances chondrogenesis2011In: Journal of tissue engineering and regenerative medicine, ISSN 1932-6254, Vol. 5, no 8, p. E188-E196Article in journal (Refereed)
    Abstract [en]

    The present work describes the feasibility of a cross-linkable injectable hyaluronan hydrogel for cartilage repair. The hydrogel used is a two-component system based on aldehyde-modified hyaluronan and hydrazide-modified polyvinyl alcohol, which are rapidly cross-linked in situ upon mixing. The in vitro study showed that chondrocytes and mesenchymal cells cultured in the gel form cartilage-like tissue, rich in glycosaminoglycans, collagen type II and aggrecan. In a rabbit animal model the injection of the hydrogel improved the healing of a full-thickness cartilage defect created in the knee as compared to non-treated controls. This rabbit study showed that the regenerated cartilage defects stained more intensely for type II collagen upon treatment with the hydrogel. The hyaluronan-based hydrogel may be used as a delivery vehicle for both growth factors and/or cells for cartilage repair. The in vivo study also indicated that the hydrogel alone has a beneficial effect on cartilage regeneration.

  • 11.
    Axelsson, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Xia, Ziyang
    Wang, Sicong
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Cheng, Ming
    Tian, Haining
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    The Role of Benzothiadiazole Unit in Organic Polymers on Photocatalytic Hydrogen ProductionManuscript (preprint) (Other academic)
    Abstract [en]

    Organic polymers based on the donor-acceptor structure are a promising class of efficient photocatalysts for solar fuel production. Among these polymers, poly(9,9-dioctylfluorene-alt-2,1,3-benzothiadiazole (PFBT) consisting of fluorene donor and benzothiadiazole acceptor units has shown good photocatalytic activity when it is prepared into polymer dots (Pdots) in water. In this work, we investigate the effect of the chemical environment on the activity of photocatalysis from PFBT Pdotsfor hydrogen production. This is carried out by comparing the samples with various concentrations of Palladium in different pH conditions and with different sacrificial electron donors (SDs). Moreover, a model compound 2,1,3 -benzothiadiazole di -9,9 -dioctylfluorene (BTDF) is synthesized to investigate the mechanism for protonation of benzothiadiazole and its kinetics in the presence of an organic acid – salicylic acid, by cyclic voltammetry. We experimentally show that benzothiadiazole in BTDF can rapidly react with protons with a fitted value of 0.1 − 5 ∗ 1010M−1s−1 which should play a crucial role in the photocatalytic reaction with polymer photocatalyst containing benzothiadiazole such as PFBT Pdots for hydrogen production in acidic conditions. This work gives insights into why organic polymers with benzothiadiazole work efficiently for photocatalytic hydrogen production.

    Download full text (pdf)
    fulltext
  • 12.
    Azuma, Tomoyuki
    et al.
    Univ Tokyo, Dept Bioengn, Tokyo, Japan..
    Matsushita, Taishi
    Univ Tokyo, Dept Bioengn, Tokyo, Japan..
    Manivel, Vivek Anand
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Nilsson Ekdahl, Kristina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Linnaeus Univ, Linnaeus Ctr Biomat Chem, Kalmar, Sweden..
    Nilsson, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Teramura, Yuji
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Univ Tokyo, Dept Bioengn, Tokyo, Japan.
    Takai, Madoka
    Univ Tokyo, Dept Bioengn, Tokyo, Japan..
    Poly(2-aminoethyl methacrylate)-based polyampholyte brush surface with carboxylic groups to improve blood compatibility2020In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 31, no 5, p. 679-693Article in journal (Refereed)
    Abstract [en]

    Zwitterionic material-based polymer brush significantly prevents protein adsorption and cell adhesion, which leads to the blood compatibility. However, zwitterionic polymer itself is difficult to be modified further, for the blood compatibility since the charged balance is impaired after the modification. In this research, chemically modifiable mixed charge polymer brush is designed, without impairing its characteristics. Condensed mixed charge polymer brush will work like zwitterionic material because neighbouring opposite charge is reported to be important in the zwitterionic material. Cationic polymer brush with primary amine group, which is based on 2-aminoethyl methacrylate (AEMA), was prepared and modified by succinic anhydride to obtain carboxylic group induced poly(AEMA). The ratio of primary amine group and carboxylic group was optimized to obtain the polyampholyte brush. The blood compatibility was evaluated by measuring coagulation/complement activation, protein adsorption and cell adhesion induced by the polymer. Our designed cationic-based polyampholyte brush prevented coagulation/complement activation comparable to poly(2-methacryloyloxyethyl phosphorylcholine) brush, based on intra-monomer interaction, because condensed mix charge works like zwitterion.

  • 13.
    Azuma, Tomoyuki
    et al.
    Univ Tokyo, Dept Bioengn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan..
    Ohmori, Ryuichi
    Shibaura Inst Technol, Dept Mat Sci & Engn, Coll Engn, Koto Ku, 3-7-5 Toyosu, Tokyo 1358548, Japan..
    Teramura, Yuji
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Tokyo, Dept Bioengn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan..
    Ishizaki, Takahiro
    Shibaura Inst Technol, Dept Mat Sci & Engn, Coll Engn, Koto Ku, 3-7-5 Toyosu, Tokyo 1358548, Japan..
    Takai, Madoka
    Univ Tokyo, Dept Bioengn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan..
    Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion2017In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 159, p. 655-661Article in journal (Refereed)
    Abstract [en]

    Polymer brush, owing to its precisely controllable nanostructure, has great potential for surface modification in the biomedical field. In this study, we evaluated the bio-inertness of polymer brush, monomer monolayers, and polymer-coated surfaces based on their structures, to identify the most effective bio-inert modification. We focused on two well-known bio-inert materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol (EG). The amount of adsorbed proteins on the surface was found to be dependent on the monomer unit density in the case of MPC, whereas this correlation was not observed in the case of EG. Cell adhesion was suppressed on the brush structure of both MPC and EG units, regardless of their density. The brush structure of MPC and EG units showed better anti-protein and anti-cell-adhesion than monolayers and polymer-coated surfaces. Thus, the steric repulsion was not only important in EG units-based surface, but also in MPC-based surface. In addition, multiple polymer layers formed by MPC-based polymer coating also displayed similar properties. (C) 2017 Elsevier B.V. All rights reserved.

  • 14.
    Badali, Elham
    et al.
    Kharazmi Univ, Fac Chem, POB 15719-14911, Tehran, Iran..
    Hosseini, Mahshid
    Iran Univ Med Sci IUMS, Hazrat Rasoul Akram Hosp, Skull Base Res Ctr, Senses Inst 5, Tehran, Iran..
    Mohajer, Maryam
    Iran Univ Med Sci IUMS, Hazrat Rasoul Akram Hosp, Skull Base Res Ctr, Senses Inst 5, Tehran, Iran..
    Hassanzadeh, Sajad
    Iran Univ Med Sci IUMS, Hazrat Rasoul Akram Hosp, Skull Base Res Ctr, Senses Inst 5, Tehran, Iran..
    Saghati, Sepideh
    Tabriz Univ Med Sci, Fac Adv Med Sci, Dept Tissue Engn, Tabriz, Iran..
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Khanmohammadi, Mehdi
    Iran Univ Med Sci IUMS, Hazrat Rasoul Akram Hosp, Skull Base Res Ctr, Senses Inst 5, Tehran, Iran..
    Enzymatic Crosslinked Hydrogels for Biomedical Application2021In: Polymer science, ISSN 0965-545X, Vol. 63, no SUPPL 1, p. S1-S22Article, review/survey (Refereed)
    Abstract [en]

    Self-assembled structures primarily arise through enzyme-regulated phenomena in nature under persistent conditions. Enzymatic reactions are one of the main biological processes constructing supramolecular hydrogel networks required for biomedical applications. Such enzymatic processes provide a unique opportunity to integrate hydrogel formation. In most cases, the structure and substrates of hydrogels are adjusted by enzyme catalysis due to enzymes' chemo-, regio- and stereo-selectivity. Such hydrogels processed using various enzyme schemes showed remarkable characteristics as dynamic frames for cells, bioactive molecules, and drugs in tissue engineering, drug delivery, and regenerative medicine. The enzyme-mediated crosslinking hydrogels mimic the extracellular matrices by displaying unique physicochemical properties and functionalities such as water-retention capacity, biodegradability, biocompatibility, biostability, bioactivity, optoelectronic properties, self-healing ability, and shape memory ability. In recent years, many enzymatic systems investigated polymer crosslinking. Herein, we review efficient strategies for enzymatic hydrogelation, including hydrogel synthesis and chemistry, and demonstrate their applicability in biomedical systems. Furthermore, the advantages, challenges, and prospects of enzymatic-crosslinkable hydrogels are discussed. The results of biocompatible hydrogel products show that these crosslinking mechanisms can fulfill requirements for a variety of biomedical applications, including tissue engineering, wound healing, and drug delivery.

  • 15.
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Block Copolymer Electrolytes: Polymers for Solid-State Lithium Batteries2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The use of solid polymer electrolytes (SPEs) for lithium battery devices is a rapidly growing research area. The liquid electrolytes that are used today are inflammable and harmful towards the battery components. The adoption of SPEs could drastically improve this situation, but they still suffer from a too low performance at ambient temperatures for most practical applications. However, by increasing the operating temperature to between 60 °C and 90 °C, the electrolyte performance can be drastically increased. The drawback of this approach, partly, is that parasitic side reactions become noticeable at these elevated temperatures, thus affecting battery lifetime and performance. Furthermore, the ionically conductive polymer loses its mechanical integrity, thus triggering a need for an external separator in the battery device.

    One way of combining both mechanical properties and electrochemical performance is to design block copolymer (BCP) electrolytes, that is, polymers that are tailored to combine one ionic conductive block with a mechanical block, into one polymer. The hypothesis is that the BCP electrolytes should self-assemble into well-defined microphase separated regions in order to maximize the block properties. By varying monomer composition and structure of the BCP, it is possible to design electrolytes with different battery device performance. In Paper I and Paper II two types of methacrylate-based triblock copolymers with different mechanical blocks were synthesized, in order to evaluate morphology, electrochemical performance, and battery performance. In Paper III and Paper IV a different strategy was adopted, with a focus on diblock copolymers. In this strategy, the ethylene oxide was replaced by poly(e-caprolactone) and poly(trimethylene carbonate) as the lithium-ion dissolving group. The investigated mechanical blocks in these studies were poly(benzyl methacrylate) and polystyrene. The battery performance for these electrolytes was superior to the methacrylate-based battery devices, thus resulting in stable battery cycling at 40 °C and 30 °C.

    List of papers
    1. d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance
    Open this publication in new window or tab >>d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance
    Show others...
    2017 (English)In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, p. 234-242Article in journal (Refereed) Published
    Abstract [en]

    A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-337667 (URN)10.1016/j.polymer.2017.10.044 (DOI)000415014300026 ()
    Funder
    Swedish Research Council
    Available from: 2018-01-03 Created: 2018-01-03 Last updated: 2018-02-22Bibliographically approved
    2. Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries
    Open this publication in new window or tab >>Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries
    2018 (English)In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 321, p. 55-61Article in journal (Refereed) Published
    Abstract [en]

    A triblock copolymer of benzyl methacrylate and oligo(ethylene glycol) methyl ether methacrylate was polymerized to form the general structure PBnMA-POEGMA-PBnMA, using atom transfer radical polymerization (ATRP). The block copolymer (BCP) was blended with lithium bis(trifluoro methylsulfonate) (LiTFSI) to form solid polymer electrolytes (SPEs). AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 °C to 90 °C. Small-angle X-ray scattering (SAXS) was used to study the morphology of the electrolytes in the temperature interval 30 °C to 150 °C. By using benzyl methacrylate as a mechanical block it was possible to tune the microphase separation by the addition of LiTFSI, as proven by SAXS. By doing so the ionic conductivity increased to values higher than ones measured on a methyl methacrylate triblock copolymer-based electrolyte in the mixed state, which was investigated in an earlier paper by our group. A Li|SPE|LiFePO4 half-cell was constructed and cycled at 60 °C. The cell produced a discharge capacity of about 100 mAh g−1 of LiFePO4 at C/10, and the half-cell cycled for more than 140 cycles.

    National Category
    Polymer Chemistry
    Research subject
    Chemistry with specialization in Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-340851 (URN)10.1016/j.ssi.2018.04.006 (DOI)000437372200009 ()
    Funder
    Swedish Energy AgencyStandUp
    Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2018-10-11Bibliographically approved
    3. ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization
    Open this publication in new window or tab >>ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization
    Show others...
    2018 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 8, no 30, p. 16716-16725Article in journal (Refereed) Published
    Abstract [en]

    In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-340854 (URN)10.1039/c8ra00377g (DOI)000431814500034 ()
    Funder
    Swedish Energy Agency, 42031-1EU, Horizon 2020, 685716
    Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2022-09-15Bibliographically approved
    4. A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications
    Open this publication in new window or tab >>A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications
    Show others...
    2020 (English)In: ACS Applied Polymer Materials, ISSN 2637-6105, Vol. 2, no 2, p. 939-948Article in journal (Refereed) Published
    Abstract [en]

    In this paper we present a solid polymer electrolyte (SPE) that uniquely combines ionic conductivity and mechanical robustness. This is achieved with a diblock copolymer poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate). The SPE with 16.7 wt% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) showed the highest ionic conductivity (9.1×10−6 S cm−1 at 30 °C) and apparent transference number (T+) of 0.64 ± 0.04. Due to the employment of the benzyl methacrylate hard-block, this SPE is mechanically robust with a storage modulus (E') of 0.2 GPa below 40 °C, similar to polystyrene, thus making it a suitable material also for load-bearing constructions. The cell Li|SPE|LiFePO4 is able to cycle reliably at 30 °C for over 300 cycles. The promising mechanical properties, desired for compatibility with Li-metal, together with the fact that BCT is a highly reliable electrolyte material makes this SPE an excellent candidate for next-generation all-solid-state batteries.

    Place, publisher, year, edition, pages
    American Chemical Society (ACS), 2020
    Keywords
    block copolymer, solid polymer electrolyte, lithium-ion battery, structural battery, solid-state battery
    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-340855 (URN)10.1021/acsapm.9b01142 (DOI)000514258700088 ()
    Funder
    Swedish Energy Agency, 40466-1EU, European Research Council, 771777 FUN POLYSTORE
    Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2021-04-22Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (jpg)
    preview image
  • 16.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim Melander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications2020In: ACS Applied Polymer Materials, ISSN 2637-6105, Vol. 2, no 2, p. 939-948Article in journal (Refereed)
    Abstract [en]

    In this paper we present a solid polymer electrolyte (SPE) that uniquely combines ionic conductivity and mechanical robustness. This is achieved with a diblock copolymer poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate). The SPE with 16.7 wt% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) showed the highest ionic conductivity (9.1×10−6 S cm−1 at 30 °C) and apparent transference number (T+) of 0.64 ± 0.04. Due to the employment of the benzyl methacrylate hard-block, this SPE is mechanically robust with a storage modulus (E') of 0.2 GPa below 40 °C, similar to polystyrene, thus making it a suitable material also for load-bearing constructions. The cell Li|SPE|LiFePO4 is able to cycle reliably at 30 °C for over 300 cycles. The promising mechanical properties, desired for compatibility with Li-metal, together with the fact that BCT is a highly reliable electrolyte material makes this SPE an excellent candidate for next-generation all-solid-state batteries.

    Download full text (pdf)
    fulltext
  • 17.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hedman, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sångeland, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization2018In: RSC Advances, E-ISSN 2046-2069, Vol. 8, no 30, p. 16716-16725Article in journal (Refereed)
    Abstract [en]

    In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

    Download full text (pdf)
    fulltext
  • 18.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Rubatat, Laurent
    CNRS/UNIV Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l´ Environnement et les Materiaux, Pau, France.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries2018In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 321, p. 55-61Article in journal (Refereed)
    Abstract [en]

    A triblock copolymer of benzyl methacrylate and oligo(ethylene glycol) methyl ether methacrylate was polymerized to form the general structure PBnMA-POEGMA-PBnMA, using atom transfer radical polymerization (ATRP). The block copolymer (BCP) was blended with lithium bis(trifluoro methylsulfonate) (LiTFSI) to form solid polymer electrolytes (SPEs). AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 °C to 90 °C. Small-angle X-ray scattering (SAXS) was used to study the morphology of the electrolytes in the temperature interval 30 °C to 150 °C. By using benzyl methacrylate as a mechanical block it was possible to tune the microphase separation by the addition of LiTFSI, as proven by SAXS. By doing so the ionic conductivity increased to values higher than ones measured on a methyl methacrylate triblock copolymer-based electrolyte in the mixed state, which was investigated in an earlier paper by our group. A Li|SPE|LiFePO4 half-cell was constructed and cycled at 60 °C. The cell produced a discharge capacity of about 100 mAh g−1 of LiFePO4 at C/10, and the half-cell cycled for more than 140 cycles.

    Download full text (pdf)
    fulltext
  • 19.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Rubatat, Laurent
    Univ Pau & Pays Adour, CNRS, Inst Sci Analyt & Physicochim Environm & Mat, UMR5254, F-64000 Pau, France.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance2017In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, p. 234-242Article in journal (Refereed)
    Abstract [en]

    A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

  • 20.
    Bergman, Kristoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Hyaluronan Derivatives and Injectable Gels for Tissue Engineering2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present work describes the preparation of hyaluronan derivatives and hydrogels with potential use in tissue engineering applications. A potentially injectable hydrogel consisting of hyaluronan and collagen was successfully used to grow neurons in vitro by encapsulation of neural stem and progenitor cells. Attempts were further made to establish a suitable modification strategy which could be used for the preparation of in vivo cross-linkable hyaluronan derivatives. The synthesis of a model substance consisting of a D-glucuronate derivative which could simplify the development of such a modification technique is described, although a new method to prepare hyaluronan derivatives was found without its use. The modification strategy involves the use of a triazine-reagent which enables the covalent attachment of hydrophilic and hydrophobic amines to hyaluronan carboxyl groups in a controlled fashion under mild conditions. Using triazine-activated amidation we synthesized an aldehyde-derivative of hyaluronan which was used to prepare gels by cross-linking with hydrazide-modified polyvinyl-alcohol. Gels were formed in less than 1 minute by mixing equal volumes of the polymer derivatives and they were subsequently used as a carrier for bone morphogenetic protein-2. An in vitro release study showed that approximately 88% of the growth factor is retained in the gel over a 4 week period. The ability to form new bone in vivo was further evaluated in an ectopic rat model by the injection of gels containing 30 µg BMP-2. Radiographic and histological examination 4 and 10 weeks after injection showed the formation of new bone without any signs of inflammation or foreign body response. Hydroxyapatite particles were further added to improve the mechanical properties of the gel, and a comparative study was conducted. This time the induced tissue consisted not only of bone, but also of interconnected cartilage and tendon, as confirmed by histology and immunohistochemistry.

    List of papers
    1. Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix
    Open this publication in new window or tab >>Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix
    Show others...
    2007 (English)In: Journal of Neuroscience Research, ISSN 0360-4012, E-ISSN 1097-4547, Vol. 85, no 10, p. 2138-2146Article in journal (Refereed) Published
    Abstract [en]

    Efficient 3D cell systems for neuronal induction are needed for future use in tissue regeneration. In this study, we have characterized the ability of neural stem/progenitor cells (NS/PC) to survive, proliferate, and differentiate in a collagen type I-hyaluronan scaffold. Embryonic, postnatal, and adult NS/PC were seeded in the present 3D scaffold and cultured in medium containing epidermal growth factor and fibroblast growth factor-2, a condition that stimulates NS/PC proliferation. Progenitor cells from the embryonic brain had the highest proliferation rate, and adult cells the lowest, indicating a difference in mitogenic responsiveness. NS/PC from postnatal stages down-regulated nestin expression more rapidly than both embryonic and adult NS/PC, indicating a faster differentiation process. After 6 days of differentiation in the 3D scaffold, NS/PC from the postnatal brain had generated up to 70% neurons, compared with 14% in 2D. NS/PC from other ages gave rise to approximately the same proportion of neurons in 3D as in 2D (9-26% depending on the source for NS/PC). In the postnatal NS/PC cultures, the majority of III-tubulin-positive cells expressed glutamate, -aminobutyric acid, and synapsin I after 11 days of differentiation, indicating differentiation to mature neurons. Here we report that postnatal NS/PC survive, proliferate, and efficiently form synapsin I-positive neurons in a biocompatible hydrogel.

    Keywords
    3D cultures, neural stem/progenitor cells, hydrogel, scaffold, neurogenesis
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-11683 (URN)10.1002/jnr.21358 (DOI)000248516700008 ()17520747 (PubMedID)
    Available from: 2007-10-17 Created: 2007-10-17 Last updated: 2017-12-11Bibliographically approved
    2. Selective Michael-type addition of a D-glucuronic acid derivative in the synthesis of model substances for uronic acid containing polysaccharides
    Open this publication in new window or tab >>Selective Michael-type addition of a D-glucuronic acid derivative in the synthesis of model substances for uronic acid containing polysaccharides
    2008 (English)In: Express Polymer Letters, E-ISSN 1788-618X, Vol. 2, no 8, p. 553-559Article in journal (Refereed) Published
    Abstract [en]

    A flexible protocol for the preparation of model substances for uronic acid containing polysaccharides is presented.We have synthesized a D-glucuronic acid derivative which is designed so that it easily can be conjugated with differentstructures and architectures by selective Michael-type addition. By successful coupling of the glucuronic acidderivative to polyethylene glycol with high degree of conversion, products were obtained that were easily characterized andwhich resembled polysaccharides in terms of solubility and purification methods that could be employed. The model substancecan potentially be used to facilitate optimization of low-degree modification reactions of high molecular weightD-glucuronic acid containing polysaccharides.

    Keywords
    polymer gels, polysaccharides, Michael-type addition, model substance, NMR
    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-97728 (URN)10.3144/expresspolymlett.2008.67 (DOI)000263687000004 ()
    Available from: 2008-11-14 Created: 2008-11-14 Last updated: 2023-12-21Bibliographically approved
    3. Hyaluronic acid derivatives prepared in aqueous media by triazine-activated amidation
    Open this publication in new window or tab >>Hyaluronic acid derivatives prepared in aqueous media by triazine-activated amidation
    Show others...
    2007 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 8, no 7, p. 2190-2195Article in journal (Refereed) Published
    Abstract [en]

    A method is presented for the preparation of hyaluronic acid derivatives obtained through triazine-activated amidation. A number of amines were successfully reacted with hyaluronic acid carboxyl groups using 2-chloro-4,6-dimethoxy-1,3,5-triazine as an activating species in a mixture of water and acetonitrile under neutral conditions. By varying the amount of triazine reagent, it was possible to control the degree of modification. Depending on the amine chosen, degrees of modification ranging from 3 to 20% were obtained when using 0.5 equiv of the triazine to hyaluronic acid carboxyl groups. The possibility to perform the reaction in a mixture of water and acetonitrile facilitates the introduction of a wide range of both hydrophilic and hydrophobic amines. Triazine-activated amidation appears to be a highly versatile, controllable, and relatively mild technique for modification of hyaluronic acid, and we predict that it will be useful in the design of novel hyaluronic acid based biomaterials.

    Keywords
    Oside polymer, Experimental study, Mild operating conditions, Aqueous medium, Triazine derivatives, Activation, Primary amine, Amidation, Chemical modification, Preparation, Modified material, Hyaluronic acid
    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:uu:diva-97729 (URN)10.1021/bm0701604 (DOI)000247820000022 ()17579475 (PubMedID)
    Available from: 2008-11-14 Created: 2008-11-14 Last updated: 2017-12-14Bibliographically approved
    4. Injectable cell-free template for bone-tissue formation
    Open this publication in new window or tab >>Injectable cell-free template for bone-tissue formation
    Show others...
    2009 (English)In: Journal of Biomedical Materials Research-Part A, ISSN 1549-3296, Vol. 91A, no 4, p. 1111-1118Article in journal (Refereed) Published
    Abstract [en]

    Here we present a novel injectable hydrogel which forms a template for de novo formation of bone tissue. Hydrogel formation takes place in situ in less than 1 min by the cross-linking of multifunctional hyaluronic acid and polyvinyl alcohol derivatives. Endogenous cells are recruited in vivo by incorporating bone morphogenetic protein-2 (BMP-2), a powerful promoter for osteogenic differentiation. The hydrogel was evaluated in vitro by performing a cell viability test and a release study and in vivo by a rat ectopic model. Examination by X-ray, microcomputed tomography, and histology revealed a significant bone formation at the target site for gels containing BMP-2, and a complete degradation was observed for gels without BMP-2 four weeks after injection. There were no signs of inflammation or foreign body response in either group and we believe that this system has the potential as an off-the-shelf injectable to be used where bone tissue is needed.

    Place, publisher, year, edition, pages
    Wiley Periodicals, Inc, 2009
    Keywords
    hydrogel, hyaluronan, injectable, bone tissue engineering, bone morphogenetic protein, polyvinyl alcohol
    National Category
    Chemical Sciences
    Research subject
    Inorganic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-97730 (URN)10.1002/jbm.a.32289 (DOI)000272196900017 ()
    Available from: 2008-11-14 Created: 2008-11-14 Last updated: 2022-01-28Bibliographically approved
    5. Ectopic induction of the tendon-bone interface
    Open this publication in new window or tab >>Ectopic induction of the tendon-bone interface
    Show others...
    Article in journal (Refereed) Submitted
    Identifiers
    urn:nbn:se:uu:diva-97731 (URN)
    Available from: 2008-11-14 Created: 2008-11-14Bibliographically approved
    Download full text (pdf)
    FULLTEXT01
    Download (pdf)
    COVER01
  • 21.
    Bergman, Kristoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Polymer Chemistry.
    Selective Michael-type addition of a D-glucuronic acid derivative in the synthesis of model substances for uronic acid containing polysaccharides2008In: Express Polymer Letters, E-ISSN 1788-618X, Vol. 2, no 8, p. 553-559Article in journal (Refereed)
    Abstract [en]

    A flexible protocol for the preparation of model substances for uronic acid containing polysaccharides is presented.We have synthesized a D-glucuronic acid derivative which is designed so that it easily can be conjugated with differentstructures and architectures by selective Michael-type addition. By successful coupling of the glucuronic acidderivative to polyethylene glycol with high degree of conversion, products were obtained that were easily characterized andwhich resembled polysaccharides in terms of solubility and purification methods that could be employed. The model substancecan potentially be used to facilitate optimization of low-degree modification reactions of high molecular weightD-glucuronic acid containing polysaccharides.

  • 22.
    Bermejo-Velasco, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Insights into Covalent Chemistry for the Developmen­t of Biomaterials2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Covalent cross-linking chemistry is currently exploited in the preparation of biomaterial for biomedical applications. Choice of these chemistries for the preparation of biomaterials and bioconjugates strongly influences the biological output of these materials. Therefore, this thesis aims to develop novel bioconjugation strategies understanding their advantages and drawbacks. Our results provide new insight to adapt these chemical transformations for a specific application.

    The first part of this thesis points out the relevance of tuning different properties of biomaterials with specific emphasis on the development of hyaluronic acid (HA) hydrogels. The second part of the thesis describes how different chemical transformations including hydrazone formation (Paper I), thiazolidine formation (Paper II), cross-aldol addition reaction (Paper III) and disulfide formation (Paper IV) dictate material properties.

    This thesis explores both basic organic reaction mechanism and application of these reactions to influence material characteristics. The detailed study of the reaction conditions, kinetics, and stability of the products will help to understand the mechanical properties, hydrolytic stability, and degradability of the materials described here.

    Additionally, we performed degradation studies of gadolinium labeled HA hydrogels using magnetic resonance imaging. Furthermore, we also explored post-synthetic modification of hydrogels to link model fluorescent moieties as well as explored the tissue adhesive properties using Schiff-base formation.

    In summary, this thesis presents a selection of different covalent chemistries for the design of advanced biomaterials. The advantages and disadvantages of these chemistries are rigorously investigated. We believe, such an investigation provides a better understanding of the bioconjugation strategies for the preparation of biomaterials with potential clinical translation.

    List of papers
    1. Injectable hyaluronic acid hydrogels with the capacity for magnetic resonance imaging
    Open this publication in new window or tab >>Injectable hyaluronic acid hydrogels with the capacity for magnetic resonance imaging
    Show others...
    2018 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 197, p. 641-648Article in journal (Refereed) Published
    Abstract [en]

    Monitoring hydrogel degradation in real time using noninvasive imaging techniques is of great interest for designing a scaffold in tissue engineering. We report the preparation of gadolinium (Gd)-labeled and injectable hyaluronic acid (HA) hydrogels that can be visualized using T-1- and T-2-weighted magnetic resonance imaging (MRI). An HA derivative functionalized with thiol and hydrazide was labeled using a diethylenetriaminepentaacetate complex modified with "clickable" dithiopyridyl functionalities (degree of modification was 3.77% with respect to HA repeat units). The HA derivative modified with cross-linkable groups and Gd complex exhibited relaxivities r(1) = 3.78 mM(-1)s(-1) and r(2) = 56.3 mM(-1)s(-1). A hydrazone hydrogel network was obtained by mixing Gd-labeled HA-hydrazide and HA-aldehyde derivatives. Enzymatic hydrogel degradation could be followed using MRI because the MR images showed great correlation with the hydrogel mass loss. Ex vivo MRI of injected Gd-labeled hydrogels demonstrated that they show a significant contrast difference (SNRcoronal = 456; SNRaxial = 459) from the surrounding tissues. These results indicate that our Gd-labeled HA hydrogel has great potential as an injectable biocompatible hydrogel that can be used for longitudinal tracking in vivo using MRI.

    Place, publisher, year, edition, pages
    Elsevier, 2018
    Keywords
    Gadolinium complex, Hyaluronic acid, Injectable hydrogels, Magnetic resonance imaging, Biodegradation
    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-361020 (URN)10.1016/j.carbpol.2018.06.028 (DOI)000438466500070 ()30007657 (PubMedID)
    Available from: 2018-09-20 Created: 2018-09-20 Last updated: 2022-10-24Bibliographically approved
    2. Thiazolidine chemistry revisited: a fast, efficient and stable click-type reaction at physiological pH
    Open this publication in new window or tab >>Thiazolidine chemistry revisited: a fast, efficient and stable click-type reaction at physiological pH
    Show others...
    2018 (English)In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 88, p. 12507-12510Article in journal (Refereed) Published
    Abstract [en]

    We describe the fast reaction kinetics between 1,2-aminothiols and aldehydes. Under physiological conditions such a click-type reaction afforded a thiazolidine product that remains stable and did not require any catalyst. This type of bioorthogonal reaction offers enormous potential for the coupling of biomolecules in an efficient and biocompatible manner.

    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-364896 (URN)10.1039/c8cc05405c (DOI)000448947000019 ()30345438 (PubMedID)
    Available from: 2018-11-06 Created: 2018-11-06 Last updated: 2019-06-26Bibliographically approved
    3. First Aldol-Crosslinked Hyaluronic Acid Hydrogel: Fast and Hydrolytically Stable Gel with Tissue Adhesive Properties
    Open this publication in new window or tab >>First Aldol-Crosslinked Hyaluronic Acid Hydrogel: Fast and Hydrolytically Stable Gel with Tissue Adhesive Properties
    Show others...
    (English)In: Chemical Sciences Journal, ISSN 2150-3494Article in journal (Refereed) Submitted
    Abstract [en]

    Currently, there are limited approaches to tailor 3D scaffolds crosslinked with a stable covalent C-C bond that does not require any catalysts or initiators. We present here the first hydrogels employing aldol condensation chemistry that exhibit exceptional physicochemical properties. We investigated the aldol-crosslinking chemistry using two types of aldehyde-modified hyaluronic acid (HA) derivatives, namely; an enolizable HA-aldehyde (HA-Eal) and a non-enolizable HA-aldehyde (HA-Nal). Hydrogels formed using HA-Eal demonstrate inferior crosslinking efficiency (due to intramolecular loop formation), when compared with hydrogels formed by mixing HA-Eal and HA-NaI leading to a cross-aldol product. The change in mechanical properties as a result of crosslinking at different pH is determined using rheological measurements and is interpreted in terms of molecular weight between cross-links (Mc). The novel HA cross-aldol hydrogels demonstrate excellent hydrolytic stability and favorable mechanical properties but allow hyaluronidase mediated enzymatic degradation. Interestingly, residual aldehyde functionality within the aldol product leads to adhesion to tissue as demonstrated by bonding two bone tissues. The aldehyde functionality also permits facile post-synthetic modifications with nucleophilic reagents such as Alexa FluorTM 488. Finally, we demonstrate that the novel hydrogel is biocompatible with encapsulated stem cells that show a linear rate of expansion in our 3–6 days of study.

    Keywords
    hyaluronic acid, aldol chemisty, stable hydrogels, tissue adhesive
    National Category
    Materials Chemistry
    Research subject
    Chemistry with specialization in Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-374999 (URN)
    Available from: 2019-01-24 Created: 2019-01-24 Last updated: 2019-01-24
    4. Modulating thiol pKa promotes disulfide formation at physiological pH: An elegant strategy to design disulfide cross-linked hyaluronic acid hydrogels
    Open this publication in new window or tab >>Modulating thiol pKa promotes disulfide formation at physiological pH: An elegant strategy to design disulfide cross-linked hyaluronic acid hydrogels
    Show others...
    2019 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 3, p. 1412-1420Article in journal (Refereed) Published
    Abstract [en]

    The disulfide bond plays a crucial role in protein biology and has been exploited by scientists to develop antibody-drug conjugates, sensors and for the immobilization other biomolecules to materials surfaces. In spite of its versatile use, the disulfide chemistry suffers from some inevitable limitations such as the need for basic conditions (pH > 8.5), strong oxidants and long reaction times. We demonstrate here that thiol-substrates containing electron-withdrawing groups at the β-position influence the deprotonation of the thiol group, which is the key reaction intermediate in the formation of disulfide bonds. Evaluation of reaction kinetics using small molecule substrate such as L-cysteine indicated disulfide formation at a 2.8-fold higher (k1 = 5.04 x 10-4 min-1) reaction rate as compared to the conventional thiol substrate, namely 3-mercaptopropionic acid (k1 = 1.80 x 10-4 min-1) at physiological pH (pH 7.4). Interestingly, the same effect could not be observed when N-acetyl-L-cysteine substrate (k1 = 0.51 x 10-4 min-1) was used. We further grafted such thiol-containing molecules (cysteine, N-acetyl-cysteine, and 3-mercaptopropionic acid) to a biopolymer namely hyaluronic acid (HA) and determined the pKa value of different thiol groups by spectrophotometric analysis. The electron-withdrawing group at the β-position reduced the pKa of the thiol group to 7.0 for HA-cysteine (HA-Cys); 7.4 for N-acetyl cysteine (HA-ActCys) and 8.1 for HA-thiol (HA-SH) derivatives respectively. These experiments further confirmed that the concentration of thiolate (R-S-) ions could be increased with the presence of electron-withdrawing groups, which could facilitate disulfide cross-linked hydrogel formation at physiological pH. Indeed, HA grafted with cysteine or N-acetyl groups formed hydrogels within 3.5 minutes or 10 hours, respectively at pH 7.4. After completion of crosslinking reaction both gels demonstrated a storage modulus G’ ≈3300–3500 Pa, indicating comparable levels of crosslinking. The HA-SH gel, on the other hand, did not form any gel at pH 7.4 even after 24 h. Finally, we demonstrated that the newly prepared hydrogels exhibited excellent hydrolytic stability but can be degraded by cell-directed processes (enzymatic and reductive degradation). We believe our study provides a valuable insight on the factors governing the disulfide formation and our results are useful to develop strategies that would facilitate generation of stable thiol functionalized biomolecules or promote fast thiol oxidation according to the biomedical needs.

    National Category
    Materials Chemistry
    Research subject
    Chemistry with specialization in Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-375001 (URN)10.1021/acs.biomac.8b01830 (DOI)000461270500028 ()30726668 (PubMedID)
    Funder
    Swedish Foundation for Strategic Research , 139400127EU, FP7, Seventh Framework Programme, 607868Swedish Foundation for Strategic Research , 139400126
    Available from: 2019-01-24 Created: 2019-01-24 Last updated: 2019-04-11Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (jpg)
    presentationsbild
  • 23.
    Bermejo-Velasco, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Dou, Weiqiang
    Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands.
    Heerschap, Arend
    Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands.
    Ossipov, Dmitri A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Injectable hyaluronic acid hydrogels with the capacity for magnetic resonance imaging2018In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 197, p. 641-648Article in journal (Refereed)
    Abstract [en]

    Monitoring hydrogel degradation in real time using noninvasive imaging techniques is of great interest for designing a scaffold in tissue engineering. We report the preparation of gadolinium (Gd)-labeled and injectable hyaluronic acid (HA) hydrogels that can be visualized using T-1- and T-2-weighted magnetic resonance imaging (MRI). An HA derivative functionalized with thiol and hydrazide was labeled using a diethylenetriaminepentaacetate complex modified with "clickable" dithiopyridyl functionalities (degree of modification was 3.77% with respect to HA repeat units). The HA derivative modified with cross-linkable groups and Gd complex exhibited relaxivities r(1) = 3.78 mM(-1)s(-1) and r(2) = 56.3 mM(-1)s(-1). A hydrazone hydrogel network was obtained by mixing Gd-labeled HA-hydrazide and HA-aldehyde derivatives. Enzymatic hydrogel degradation could be followed using MRI because the MR images showed great correlation with the hydrogel mass loss. Ex vivo MRI of injected Gd-labeled hydrogels demonstrated that they show a significant contrast difference (SNRcoronal = 456; SNRaxial = 459) from the surrounding tissues. These results indicate that our Gd-labeled HA hydrogel has great potential as an injectable biocompatible hydrogel that can be used for longitudinal tracking in vivo using MRI.

  • 24.
    Bermejo-Velasco, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Kadekar, Sandeep
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Tavares da Costa, Marcus Vinicius
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Mechanics.
    Oommen, Oommen P.
    Tampere Univ, Bioengn & Nanomed Lab, Fac Med & Hlth Technol, Korkeakoulunkatu 3, Tampere 33720, Finland;Tampere Univ, BioMediTech Inst, Korkeakoulunkatu 3, Tampere 33720, Finland.
    Gamstedt, E. Kristofer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Mechanics.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Varghese, Oommen P.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    First Aldol Cross-Linked Hyaluronic Acid Hydrogel: Fast and Hydrolytically Stable Hydrogel with Tissue Adhesive Properties2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 41, p. 38232-38239Article in journal (Refereed)
    Abstract [en]

    Currently, there are limited approaches to tailor 3D scaffolds cross-linked with a stable covalent C-C bond that does not require any catalysts or initiators. We present here the first hydrogels employing aldol condensation chemistry that exhibit exceptional physicochemical properties. We investigated the aldol-cross-linking chemistry using two types of aldehyde-modified hyaluronic acid (HA) derivatives, namely, an enolizable HA-aldehyde (HA-EaI) and a non-enolizable HA-aldehyde (HA-NaI). Hydrogels formed using HA-EaI demonstrate inferior cross linking efficiency (due to intramolecular loop formation), when compared with hydrogels formed by mixing HA-EaI and HA-NaI leading to a cross-aldol product. The change in mechanical properties as a result of cross-linking at different pH values is determined using rheological measurements and is interpreted in terms of molecular weight between cross-links (Me). The novel HA cross-aldol hydrogel demonstrate excellent hydrolytic stability and favorable mechanical properties but allow hyaluronidase-mediated enzymatic degradation. Interestingly, residual aldehyde functionality within the aldol product rendered the tissue adhesive properties by bonding two bone tissues. The aldehyde functionality also facilitated facile post-synthetic modifications with nucleophilic reagents. Finally, we demonstrate that the novel hydrogel is biocompatible with encapsulated stem cells that show a linear rate of expansion in our 3-6 days of study.

  • 25.
    Bermejo-Velasco, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Nawale, Ganesh N.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Oommen, Oommen P.
    Bioengineering and Nanomedicine Lab, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, and BioMediTech Institute, 33720, Tampere, Finland.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Varghese, Oommen P.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Thiazolidine chemistry revisited: a fast, efficient and stable click-type reaction at physiological pH2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 88, p. 12507-12510Article in journal (Refereed)
    Abstract [en]

    We describe the fast reaction kinetics between 1,2-aminothiols and aldehydes. Under physiological conditions such a click-type reaction afforded a thiazolidine product that remains stable and did not require any catalyst. This type of bioorthogonal reaction offers enormous potential for the coupling of biomolecules in an efficient and biocompatible manner.

    Download full text (pdf)
    fulltext
  • 26.
    Berts, Ida
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Relating the Bulk and Interface Structure of Hyaluronan to Physical Properties of Future Biomaterials2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This dissertation describes a structural investigation of hyaluronan (HA) with neutron scattering techniques. HA is a natural biopolymer and one of the major components of the extracellular matrix, synovial fluid, and vitreous humor.  It is used in several biomedical applications like tissue engineering, drug delivery, and treatment of osteoarthritis. Although HA is extensively studied, very little is known about its three-dimensional conformation and how it interacts with ions and other molecules. The study aims to understand the bulk structure of a cross-linked HA hydrogel, as well as the conformational arrangement of HA at solid-liquid interfaces. In addition, the structural changes of HA are investigated by simulation of physiological environments, such as changes in ions, interactions with nanoparticles, and proteins etc. Small-angle neutron scattering and neutron reflectivity are the two main techniques applied to investigate the nanostructure of hyaluronan in its original, hydrated state.

    The present study on hydrogels shows that they possess inhomogeneous structures best described with two correlation lengths, one of the order of a few nanometers and the other in the order of few hundred nanometers. These gels are made up of dense polymer-rich clusters linked to each other. The polymer concentration and mixing governs the connectivity between these clusters, which in turn determines the viscoelastic properties of the gels. Surface-tethered HA at a solid-liquid interface is best described with a smooth varying density profile. The shape of this profile depends on the immobilization chemistry, the deposition protocol, and the ionic interactions. HA could be suitably modified to enhance adherence to metal surfaces, as well as incorporation of proteins like growth factors with tunable release properties. This could be exploited for surface coating of implants with bioactive molecules. The knowledge gained from this work would significantly help to develop future biomaterials and surface coatings of implants and biomedical devices.

    List of papers
    1. Structure of polymer and particle aggregates in hydrogel composites
    Open this publication in new window or tab >>Structure of polymer and particle aggregates in hydrogel composites
    2013 (English)In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 51, no 6, p. 421-429Article in journal (Refereed) Published
    Abstract [en]

    Knowledge of the structure of a biomaterial is usually vital to control its function. This article provides a structural characterization of a hyaluronan scaffold that has demonstrated good biocompatibility and is used to induce bone regeneration. Hyaluronan hydrogels are appealing materials that can function as a matrix to incorporate both organic and inorganic substances to enhance tissue growth. Because of the intrinsic properties of this swollen matrix, one needs a very sensitive technique that can be applied in situ to determine the organization of the polymers in a gel. Small-angle neutron scattering is used to determine the characteristics of the inhomogeneous structure of the hydrogel both with and without added particles. The results are interpreted using models of structure with two length scales that are beyond the traditional picture of homogeneous gels. The observed structure and the dimensions can explain the previously reported rheological properties of gels containing different amount of polymers. Hydroxyapatite nanoparticles added to the gel are frozen in the gel matrix. We are able to determine the distribution and shape of these particles as they aggregate around the polymer chains. We have also concluded, in this case, that the particle structure is concentration independent. Information about the nanostructure for an applicable biomaterial guides the formulation, preparation, and use that should lead to further understanding of its exploitation.

    Keywords
    biopolymers, correlation length, hyaluronan, hydrogels, nanocomposites, neutron scattering
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:uu:diva-197038 (URN)10.1002/polb.23230 (DOI)000315050800005 ()
    Available from: 2013-03-19 Created: 2013-03-18 Last updated: 2022-01-28Bibliographically approved
    2. Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions
    Open this publication in new window or tab >>Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions
    2013 (English)In: European Physical Journal E, ISSN 1292-8941, Vol. 36, no 7, p. 70-Article in journal (Refereed) Published
    Abstract [en]

    The present paper investigates the structure and composition of grafted sodium hyaluronanat a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profileof the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a highersurface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and howsurface layers respond to changes in calcium ions in the solvent.

    National Category
    Polymer Technologies Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-197814 (URN)10.1140/epje/i2013-13070-7 (DOI)000322872700002 ()
    Available from: 2013-04-04 Created: 2013-04-04 Last updated: 2022-01-28Bibliographically approved
    3. Adsorption and co-adsorption of human serum albumin and myoglobin with hyaluronan on different substrates
    Open this publication in new window or tab >>Adsorption and co-adsorption of human serum albumin and myoglobin with hyaluronan on different substrates
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Polymer Chemistry Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-197815 (URN)
    Available from: 2013-04-12 Created: 2013-04-04 Last updated: 2013-05-06
    4. Polymeric Smart Coating Strategy for Titanium Implants
    Open this publication in new window or tab >>Polymeric Smart Coating Strategy for Titanium Implants
    Show others...
    2014 (English)In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 16, no 11, p. 1340-1350Article in journal (Refereed) Published
    Abstract [en]

    Hyaluronan based hydrogel coatings can mimic extracellular matrix components and incorporate growth factors that can be released during a progressive degradation while new tissue regenerates. This paper describes a structural characterization of a hydrogel coating made of modified hyaluronan polymers and how these coatings interact with bone morphogenetic protein-2 (BMP-2). Quartz crystal microbalance and neutron reflectivity measurements were used for in-situ, real-time measurements of the adsorption properties of polymers and proteins on smooth titanium oxide surfaces that mimic implant products in orthopedics. The adsorption of BMP-2 on a bare titanium oxide surface is compared to that on titanium oxide coated with different chemically modified hyaluronan, the most important being hyaluronan with bisphosphonate groups (HA-BP). The subsequent release of the BMP-2 from these hydrogel coatings could be triggered by calcium ions. The amount of adsorbed protein on the surfaces as well as the amount of released protein both depend on the type of hyaluronan coating. We conclude that HA-BP coated titanium oxide surfaces provide an excellent material for growth factor delivery in-vivo.

    National Category
    Biomaterials Science Polymer Chemistry Polymer Technologies Materials Chemistry
    Identifiers
    urn:nbn:se:uu:diva-197816 (URN)10.1002/adem.201400009 (DOI)000344790000004 ()
    Available from: 2013-04-16 Created: 2013-04-04 Last updated: 2017-12-06Bibliographically approved
    Download full text (pdf)
    fulltext
  • 27.
    Berts, Ida
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Fragneto, Giovanna
    Institut Laue-Langevin.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Rennie, Adrian R.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions2013In: European Physical Journal E, ISSN 1292-8941, Vol. 36, no 7, p. 70-Article in journal (Refereed)
    Abstract [en]

    The present paper investigates the structure and composition of grafted sodium hyaluronanat a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profileof the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a highersurface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and howsurface layers respond to changes in calcium ions in the solvent.

  • 28.
    Berts, Ida
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Fragneto, Giovanna
    Institut Laue-Langevin.
    Porcar, Lionel
    Institut Laue-Langevin.
    Hellsing, Maja S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rennie, Adrian. R
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Adsorption and co-adsorption of human serum albumin and myoglobin with hyaluronan on different substratesManuscript (preprint) (Other academic)
  • 29.
    Berts, Ida
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ossipov, Dmitri
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fragneto, Giovanna
    Institut Laue-Langevin.
    Frisk, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Rennie, Adrian. R
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Polymeric Smart Coating Strategy for Titanium Implants2014In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 16, no 11, p. 1340-1350Article in journal (Refereed)
    Abstract [en]

    Hyaluronan based hydrogel coatings can mimic extracellular matrix components and incorporate growth factors that can be released during a progressive degradation while new tissue regenerates. This paper describes a structural characterization of a hydrogel coating made of modified hyaluronan polymers and how these coatings interact with bone morphogenetic protein-2 (BMP-2). Quartz crystal microbalance and neutron reflectivity measurements were used for in-situ, real-time measurements of the adsorption properties of polymers and proteins on smooth titanium oxide surfaces that mimic implant products in orthopedics. The adsorption of BMP-2 on a bare titanium oxide surface is compared to that on titanium oxide coated with different chemically modified hyaluronan, the most important being hyaluronan with bisphosphonate groups (HA-BP). The subsequent release of the BMP-2 from these hydrogel coatings could be triggered by calcium ions. The amount of adsorbed protein on the surfaces as well as the amount of released protein both depend on the type of hyaluronan coating. We conclude that HA-BP coated titanium oxide surfaces provide an excellent material for growth factor delivery in-vivo.

    Download full text (pdf)
    fulltext
  • 30.
    Billström, Gry Hulsart
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Piskounova, Sonya
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Hilborn, Jöns
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Larsson, Sune
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Improved bone formation by altering surface area of hyaluronan-based hydrogel carrier for bone morphogenetic protein-22012In: Bone, ISSN 8756-3282, E-ISSN 1873-2763, Vol. 50, p. S114-S114Article in journal (Other academic)
  • 31.
    Breijaert, T. C.
    et al.
    Swedish Univ Agr Sci, Dept Mol Sci Bioctr, Almas 5, SE-756 51 Uppsala, Sweden.
    Daniel, G.
    Swedish Univ Agr Sci, Dept Forest Biomat & Technol Wood Sci, Vallvagen 9C-D, S-756 51 Uppsala, Sweden.
    Hedlund, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Solid State Physics.
    Svedlindh, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Solid State Physics.
    Kessler, V. G.
    Swedish Univ Agr Sci, Dept Mol Sci Bioctr, Almas 5, SE-756 51 Uppsala, Sweden.
    Granberg, H.
    Res Inst Sweden RISE, Dept Mat & Surface Design Smart Mat, Drottning Kristinas vag 61, S-114 28 Stockholm, Sweden.
    Hakansson, K.
    Res Inst Sweden RISE, Dept Mat & Surface Design Smart Mat, Drottning Kristinas vag 61, S-114 28 Stockholm, Sweden.
    Seisenbaeva, G. A.
    Swedish Univ Agr Sci, Dept Mol Sci Bioctr, Almas 5, SE-756 51 Uppsala, Sweden.
    Self-assembly of ferria-nanocellulose composite fibres2022In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 291, article id 119560Article in journal (Refereed)
    Abstract [en]

    An environmentally benign synthesis of a magnetically responsive carboxymethylated cellulose nanofibril-based material is reported. Applied experimental conditions lead to the in-situ formation of magnetite nanoparticles with primary particle sizes of 2.0-4.0 nm or secondary particles of 3.6-16.4 nm depending on whether nucleation occurred between individual carboxymethylated cellulose nanofibrils, or on exposed fibril surfaces. The increase in magnetite particle size on the cellulose fibril surfaces was attributed to Ostwald ripening, while the small particles formed within the carboxymethyl cellulose aggregates were presumably due to steric interactions. The magnetite nanoparticles were capable of coordinating to carboxymethylated cellulose nanofibrils to form large "fibre-like" assemblies. The confinement of small particles within aggregates of reductive cellulose molecules was most likely responsible for excellent conservation of magnetic characteristics on storage of this material. The possibility for using the material in drug delivery applications with release rate controlled by daylight illumination is presented.

    Download full text (pdf)
    fulltext
  • 32.
    Burghelea, Teodor
    et al.
    Univ Nantes, Nantes Atlant Univ, CNRS, Lab Thermocinet Nantes,UMR 6607, Rue Christian Pauc,BP 50609, F-44306 Nantes 3, France..
    Moyers-Gonzalez, Miguel
    Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8041, New Zealand..
    Sainudiin, Raazesh
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material2017In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 13, no 10, p. 2024-2039Article in journal (Refereed)
    Abstract [en]

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  • 33.
    Cai, Bin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Axelsson, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Zhan, Shaoqi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry. Department of Chemistry, University of Oxford.
    Pavliuk, Mariia V.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Wang, Sicong
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Tian, Haining
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Organic Polymer Dots Photocatalyst for CO2 Reduction in Aqueous SolutionManuscript (preprint) (Other academic)
    Abstract [en]

    Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9′-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT) without adding any extra co-catalyst can photocatalytic reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 μmol g-1 h-1 with a detectable selectivity of up to 100%. 5 cycles of CO2 re-purging experiments show no distinct decline in CO amount and reaction rate, indicating the promising photocatalytic stability of PFBT Pdots in photocatalytic CO2 reduction reaction. Mechanistic study reveals that photo-excited PFBT Pdots are reduced by TEOA first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in the aqueous solution, which therefore provides a strategy to develop highly efficient and environmental-friendly nanoparticular photocatalysts for CO2 reduction. 

  • 34.
    Cantoni, Federico
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Microsystems Technology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pohlit, Hannah
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Microsystems Technology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Microsystems Technology.
    Hydrogel membrane fabricated by 2-photon polymerization in a microfluidic chip for bio-interface investigations2020Conference paper (Other academic)
    Abstract [en]

    Current bio-interface models often rely upon a porous thin membrane integrated in a microfluidic system to combine the cell proximity with a precise delivery of biochemical and biophysical cues1. However, this strategy still fails to provide the cultured cells with a good mimic of the tissue physiology. Compared to a conventional porous membrane, a natural-sourced hydrogel represents a more suitable candidate to recapitulate the 3D environment of the biological counterpart2. The platform presented in this study includes a 200 µm thick methacrylated gelatin (GelMA) membrane fabricated with 2-photon polymerization3 in-between two microfluidic channels. 

  • 35.
    Carlsson, Daniel O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Hua, Kai
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Forsgren, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mihranyan, Albert
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Aspirin stability in anionically charged crystalline nanocellulose2013Conference paper (Refereed)
  • 36.
    Carlsson, Daniel O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mihranyan, Albert
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Cooxidant-free TEMPO-mediated oxidation of highly crystalline Cladophora nanocellulose2015Conference paper (Refereed)
  • 37.
    Carlsson, Daniel O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mihranyan, Albert
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation2015In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, no 5, p. 1643-1649Article in journal (Refereed)
  • 38.
    Chen, Qiaonan
    et al.
    Jinan Univ, Dept Phys, Siyuan Lab, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangzhou 510632, Peoples R China.;Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden..
    Han, Yung Hee
    Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea..
    Franco, Leandro R.
    Karlstad Univ, Dept Engn & Phys, S-65188 Karlstad, Sweden..
    Marchiori, Cleber F. N.
    Karlstad Univ, Dept Engn & Phys, S-65188 Karlstad, Sweden..
    Genene, Zewdneh
    Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden..
    Araujo, Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Karlstad Univ, Dept Engn & Phys, S-65188 Karlstad, Sweden..
    Lee, Jin-Woo
    Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea..
    Phan, Tan Ngoc-Lan
    Wu, Jingnan
    Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden.;Aalborg Univ, Dept Chem & Biosci, DK-9220 Aalborg, Denmark..
    Yu, Donghong
    Aalborg Univ, Dept Chem & Biosci, DK-9220 Aalborg, Denmark.;Sino Danish Ctr Educ & Res, DK-8000 Aarhus, Denmark..
    Kim, Dong Jun
    Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea..
    Kim, Taek-Soo
    Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea..
    Hou, Lintao
    Jinan Univ, Dept Phys, Siyuan Lab, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangzhou 510632, Peoples R China..
    Kim, Bumjoon J.
    Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea..
    Wang, Ergang
    Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden.;Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China..
    Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells2022In: Nano-Micro Letters, ISSN 2150-5551, Vol. 14, article id 164Article in journal (Refereed)
    Abstract [en]

    All-polymer solar cells (all-PSCs) possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing. Introducing flexible conjugation-break spacers (FCBSs) into backbones of polymer donor (P-D) or polymer acceptor (P-A) has been demonstrated as an efficient approach to enhance both the photovoltaic (PV) and mechanical properties of the all-PSCs. However, length dependency of FCBS on certain all-PSC related properties has not been systematically explored. In this regard, we report a series of new non-conjugated P(A)s by incorporating FCBS with various lengths (2, 4, and 8 carbon atoms in thioalkyl segments). Unlike common studies on so-called side-chain engineering, where longer side chains would lead to better solubility of those resulting polymers, in this work, we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length (i.e., C2) in P-A named PYTS-C2. Its all-PSC achieves a high efficiency of 11.37%, and excellent mechanical robustness with a crack onset strain of 12.39%, significantly superior to those of the other P(A)s. These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs, providing an effective strategy to fine-tune the structures of P(A)s for highly efficient and mechanically robust PSCs.

    Download full text (pdf)
    FULLTEXT01
  • 39.
    Chen, Shi-Peng
    et al.
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Zhu, Jin-Long
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Chen, Xing-Ru
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Wang, Zhi-Hao
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Dan, Yong-Jie
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Wang, Jing
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Zhou, Sheng-Yang
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Zhong, Gan-Ji
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Huang, Hua-Dong
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Li, Zhong-Ming
    Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China..
    Guanidine-based protic ionic liquids as highly efficient intermolecular scissors for dissolving natural cellulose2023In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 25, no 22, p. 9322-9334Article in journal (Refereed)
    Abstract [en]

    The development of highly efficient and environmentally friendly solvents for dissolving cellulose, which is the most abundant natural polymer on Earth, remains a challenge, hindering its full utilization. Herein, a green protic ionic liquid, 1,1,3,3-tetramethylguanidinium methoxyacetate ([TMGH][MAA]), was found to exhibit attractive capacity to dissolve natural cellulose with an appropriate TMG/MAA molar ratio of 7 : 3 at 80 degrees C. The solubility of cotton linter and ultra-high molecular weight cotton fibers reached 13% (w/w) and 3% (w/w), respectively, surpassing that of most solvent systems currently used for the dissolution of cellulose. The experimental and simulation results verified that the excellent dissolution ability of [TMGH][MAA] for cellulose is mainly attributed to the destruction of the intrinsic hydrogen-bond networks in cellulose by the synergistic interactions of the [TMGH] cations and [MAA] anions with the hydroxyl groups in the cellulose chains, acting as highly efficient "intermolecular scissors". The superiority of this novel dissolution system was further demonstrated by the remarkable comprehensive properties of the regenerated cellulose film including satisfactory thermostability, high transparency, and excellent mechanical properties. Furthermore, the satisfactory recovery performance of this solvent highlights its significant feasibility for large-scale industrial manufacturing. The proposed [TMGH][MAA] in this study exhibits great potential as a next-generation processing solvent for dissolving, and thus processing cellulose, promoting the sustainable development of high-value-added cellulose materials.

  • 40.
    Claverie, Marion
    et al.
    Univ Pau & Pays Adour, IPREM, CNRS, E2S,UPPA, F-64600 Anglet, France..
    McReynolds, Colin
    Univ Pau & Pays Adour, IPREM, CNRS, E2S,UPPA, F-64600 Anglet, France..
    Petitpas, Arnaud
    Univ Pau & Pays Adour, IPREM, CNRS, E2S,UPPA, F-64600 Anglet, France..
    Thomas, Martin
    Univ Pau & Pays Adour, IPREM, CNRS, E2S,UPPA, F-64600 Anglet, France..
    Fernandes, Susana C. M.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry. Univ Pau & Pays Adour, IPREM, CNRS, E2S,UPPA, F-64600 Anglet, France..
    Marine-Derived Polymeric Materials and Biomimetics: An Overview2020In: Polymers, E-ISSN 2073-4360, Vol. 12, no 5, article id 1002Article, review/survey (Refereed)
    Abstract [en]

    The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.

    Download full text (pdf)
    FULLTEXT01
  • 41.
    Congrave, Daniel G.
    et al.
    Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England..
    Drummond, Bluebell H.
    Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England..
    Gray, Victor
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England..
    Bond, Andrew D.
    Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England..
    Rao, Akshay
    Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England..
    Friend, Richard H.
    Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England..
    Bronstein, Hugo
    Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England.;Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England..
    Suppressing aggregation induced quenching in anthracene based conjugated polymers2021In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 12, no 12, p. 1830-1836Article in journal (Refereed)
    Abstract [en]

    Anthracene is a highly valuable building block for luminescent conjugated polymers, particularly when a large singlet-triplet energy gap (Delta E-ST) is desired. Unfortunately, the extended pi system of anthracene imparts a strong tendency for polymer aggregation, resulting in detrimental effects on its solid state photophysics. A large decrease in photoluminescence quantum yield (PLQY, phi(F)) on going from solution to the solid state is especially common, represented in terms of a low phi(R) (phi(R) = phi(F film)/phi(F sol.)). Significant and undesirable red-shifting of fluorescence in the solid state is also typical due to processes such as excimer formation. In this work a series of alkylene-encapsulated conjugated anthracene polymers is developed to overcome these challenging problems. We demonstrate a promising material which displays a good solid state PLQY that is effectively unchanged compared to solution measurements (phi(R) similar to 1, phi(F film) similar to 40%), alongside an identical PL 0-0 transition wavelength in solution and thin film. Such a direct transfer of luminescence properties from solution to the solid state is remarkable for a conjugated polymer and completely unprecedented for one based on anthracene.

    Download full text (pdf)
    fulltext
  • 42.
    Dahlstrand, Christian
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Jahn, Burkhard
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Grigoriev, Anton
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Villaume, Sebastien
    Ahuja, Rajeev
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Tuning the Band Gap of Polyfulvenes by Use of “Handles”: On the Effects of Exocyclic Substitution, Benzannulation, and Ring Methylation.Manuscript (preprint) (Other academic)
  • 43. Detta, Nicola
    et al.
    Brown, Toby D.
    Edin, Fredrik K.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Albrecht, Krystyna
    Chiellini, Federica
    Chiellini, Emo
    Dalton, Paul D.
    Hutmacher, Dietmar W.
    Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol)2010In: Polymer international, ISSN 0959-8103, E-ISSN 1097-0126, Vol. 59, no 11, p. 1558-1562Article in journal (Refereed)
    Abstract [en]

    Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications In the study reported, we melt-electrospun blends of poly(epsilon-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block PCL) A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 mu m) compared to pure PCL The PCL fibres obtained had average diameters ranging from 6 to 33 mu m and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased This approach shows that PCL and blends of PEG block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes.

  • 44.
    Diba, Mani
    et al.
    Radboud Univ Nijmegen Med Ctr, Dept Biomat, NL-6525 EX Nijmegen, Netherlands..
    An, Jie
    Radboud Univ Nijmegen Med Ctr, Dept Biomat, NL-6525 EX Nijmegen, Netherlands..
    Schmidt, Stephan
    Heinrich Heine Univ Dusseldorf, Inst Organ & Macromol Chem, D-40225 Dusseldorf, Germany..
    Hembury, Mathew
    Univ Utrecht, Fac Sci, UIPS, Dept Pharmaceut, NL-3508 TB Utrecht, Netherlands..
    Ossipov, Dmitri
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Boccaccini, Aldo R.
    Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Inst Biomat, D-91058 Erlangen, Germany..
    Leeuwenburgh, Sander C. G.
    Radboud Univ Nijmegen Med Ctr, Dept Biomat, NL-6525 EX Nijmegen, Netherlands..
    Exploiting Bisphosphonate-Bioactive-Glass Interactions for the Development of Self-Healing and Bioactive Composite Hydrogels2016In: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 37, no 23, p. 1952-1959Article in journal (Refereed)
    Abstract [en]

    Hydrogels are widely recognized as promising candidates for various biomedical applications, such as tissue engineering. Recently, extensive research efforts have been devoted to the improvement of the biological and mechanical performance of hydrogel systems by incorporation of functional groups and/or inorganic particles in their composition. Bisphosphonates are a class of drugs, commonly used for treatment of osteoporosis, which exhibit a strong binding affinity for hydroxyapatite. In this study, the binding affinity of a bisphosphonate-functionalized polymer, hyaluronan, toward a bioactive glass (i.e., 45S5 Bioglass) is evaluated using force-distance measurements with atomic force microscopy. The strong interaction between bisphosphonate and bioactive glass is then exploited to develop organic-inorganic composite hydrogels and the viscoelastic and self-healing ability of these materials are investigated. Finally, the stability and mineralization behavior of these hydrogels are evaluated in simulated body fluid. Following this approach, injectable, bioactive and self-healing organic-inorganic composite hydrogels are produced, which mineralize abundantly and rapidly in simulated body fluid. These properties render these composite gels suitable for applications in bone-tissue engineering.

  • 45.
    Dunér, Gunnar
    et al.
    Department of Chemistry, KTH.
    Anderson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Myrskog, Annica
    IFM, Linköping University.
    Hedlund, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science.
    Aastrup, Teodor
    Attana AB.
    Ramström, Olof
    Department of Chemistry, KTH.
    Surface-Confined Photopolymerization of pH-Responsive Acrylamide/Acrylate Brushes on Polymer Thin Films2008In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, no 14, p. 7559-7564Article in journal (Refereed)
    Abstract [en]

    Dynamic acrylamide/acrylate polymeric brushes were synthesized at gold-plated quartz crystal surfaces. The crystals were initially coated with polystyrene-type thin films, derivatized with photolabile iniferter groups, and subsequently subjected to photoinitiated polymerization in acrylamide/acrylate monomer feeds. This surface-confined polymerizationmethod enabled direct photocontrol over the polymerization, as followed by increased frequency responses of the crystal oscillations in a quartz crystal microbalance (QCM). The produced polymer layers were also found to be highlysensitive to external acid/base stimuli. Large oscillation frequency shifts were detected when the brushes were exposedto buffer solutions of different pH. The dynamic behavior of the resulting polymeric brushes was evaluated, and theextent of expansion and contraction of the films was monitored by the QCM setup in situ in real time. The resultingresponses were rapid, and the effects were fully reversible. Low pH resulted in full contractions of the films, whereashigher pH yielded maximal expansion in order to minimize repulsion around the charged acrylate centers. The surfacesalso proved to be very robust because the responsiveness was reproducible over many cycles of repeated expansionand contraction. Using ellipsometry, copolymer layers were estimated to be ∼220 nm in a collapsed state and ∼340nm in the expanded state, effectively increasing the thickness of the film by 55%.

  • 46.
    Dunér, Gunnar
    et al.
    Department of Chemistry, KTH.
    Anderson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Attana AB.
    Pei, Zhichao
    Attana AB.
    Ingemarsson, Björn
    Attana AB.
    Aastrup, Teodor
    Attana AB.
    Ramström, Olof
    Department of Chemistry, KTH.
    Signal Enhancement in Ligand-Receptor Interactions using Dynamic Polymers at Quartz Crystal Microbalance Surfaces2016In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 141, no 13, p. 3993-3996Article in journal (Refereed)
    Abstract [en]

    The potential for signal amplification on QCM sensors by use of in situ polymerized poly(acrylic acid) brushes has been studied. A biotin derivative was immobilized on these surfaces and the interaction with anti-biotin Fabs was evaluated. Interaction data was found to be specific for the studied binding events, and the level of non-specific binding was shown to be low. The surface was proven to be suitable for regeneration, of importance for biomolecular interaction analysis and repetitive immunoassays.

    For comparison, the same interaction system was tested using commercial sensor surfaces with carboxylated self-assembled monolayers. The poly(acrylic acid) surface showed a dramatic increase in signal response with more than ten times the signal of the carboxylated self-assembled monolayer surface. Thus, the present study shows that polymers can be successfully applied to amplify responses on QCM sensors, valuable for studies of interactions between receptors and low molecular weight compounds.

    Download full text (pdf)
    fulltext
  • 47.
    Ebadi, Mahsa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Eriksson, Therese
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mandal, Prithwiraj
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Costa, Luciano T.
    Univ Fed Fluminense, Inst Quim, Dept Fis Quim, BR-24020150 Niteroi, RJ, Brazil.
    Araujo, Carlos Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Restricted Ion Transport by Plasticizing Side Chains in Polycarbonate-Based Solid Electrolytes2020In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 53, no 3, p. 764-774Article in journal (Refereed)
    Abstract [en]

    Increasing the ionic conductivity has for decades been an overriding goal in the development of solid polymer electrolytes. According to fundamental theories on ion transport mechanisms in polymers, the ionic conductivity is strongly correlated to free volume and segmental mobility of the polymer for the conventional transport processes. Therefore, incorporating plasticizing side chains onto the main chain of the polymer host often appears as a clear-cut strategy to improve the ionic conductivity of the system through lowering of the glass transition temperature (T-g) This intended correlation between Tg and ionic conductivity is, however, not consistently observed in practice. The aim of this study is therefore to elucidate this interplay between segmental mobility and polymer structure in polymer electrolyte systems comprising plasticizing side chains. To this end, we utilize the synthetic versatility of the ion-conductive poly(trimethylene carbonate) (PTMC) platform. Two types of host polymers with side chains added to a PTMC backbone are employed, and the resulting electrolytes are investigated together with the side chain-free analogue both by experiment and with molecular dynamics (MD) simulations. The results show that while added side chains do indeed lead to a lower Tg, the total ionic conductivity is highest in the host matrix without side chains. It was seen in the MD simulations that while side chains promote ionic mobility associated with the polymer chain, the more efficient interchain hopping transport mechanism occurs with a higher probability in the system without side chains. This is connected to a significantly higher solvation site diversity for the Li+ ions in the side-chain-free system, providing better conduction paths. These results strongly indicate that the side chains in fact restrict the mobility of the Li+ ions in the polymer hosts.

    Download full text (pdf)
    FULLTEXT01
  • 48.
    Edeleva, Mariya
    et al.
    N.N. Vorozhtsov Institute of Organic Chemistry SB RAS;Novosibirsk 630090;Russia;Novosibirsk State University;Novosibirsk 630090.
    Fedorovskaya, E.O.
    Asanov, I.P.
    Arkhipov, V.E.
    Popov, K.M.
    Baskakova, K.I.
    Okotrub, A.V.
    Versatile approach to activation of alkoxyamine homolysis by 1,3-dipolar cycloaddition for efficient and safe nitroxide mediated polymerization2019In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 55, no 2, p. 190-193Article in journal (Refereed)
  • 49.
    Edin, Elle
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Composite Regenerative Scaffolds2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Regenerative medicine and tissue engineering solutions of heavily innervated tissues are at this point lacklustre. This thesis expands our knowledge of appropriate acellular scaffolds for tissue repair in general and nerve regeneration in particular. The optimal surgical procedure for the implantation of artificial extracellular matrix (ECM) was evaluated for recombinant human collagen (RHCIII) implants. Suturing techniques, as well as the usage of human amniotic membrane “bandages” were evaluated. While complete regeneration of corneal tissues occurred, only slight differences in effects of surgical technique could be found.

    The safety and efficacy of clinical trials using mesenchymal stromal cells (MSCs) was evaluated by conducting a systematic review and meta-analysis. MSC therapy was shown to be safe, with no increases mortality, rehospitalization or adverse events. There was also an indication of efficacy, as the overall mortality in the studies included was significantly smaller in the MSC treated group.

    Multicomponent hydrogel capsules encapsulating single cells were developed. Capsules manufactured from gelatin, agarose and fibrinogen were compared to pure gelatin capsules. The composite capsules successfully delayed cell release and prolonged cell survival.

    Surface patterning of collagen based biomimetic corneas was performed by microcontact printing. The ability of different sizes of fibronectin stripes to stimulate cell adhesion and proliferation was compared. The patterned surfaces improved cell adhesion, as well as proliferation markers.

    Conductive polymer composites were manufactured for use as nerve guides. The guides were created from electrospun polycaprolactone fibers coated with a series of different poly(3,4-ethylenedioxythiophene) films. A comparison of nerve progenitor growth and differentiation on the composite fibers was performed. Both the effects of fiber composition and MSC co-culture was investigated, with or without electrostimulation. MSC treatments and polymer coating was both important for nerve cell differentiation and growth.

    List of papers
    1. Effect of Surgical Technique on Corneal Implant Performance.
    Open this publication in new window or tab >>Effect of Surgical Technique on Corneal Implant Performance.
    Show others...
    2014 (English)In: Translational Vision Science & Technology, E-ISSN 2164-2591, Vol. 3, no 2, article id 6Article in journal (Refereed) Published
    Abstract [en]

    PURPOSE: Our aim was to determine the effect of a surgical technique on biomaterial implant performance, specifically graft retention.

    METHODS: Twelve mini pigs were implanted with cell-free, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross-linked recombinant human collagen type III (RHCIII) hydrogels as substitutes for donor corneal allografts using overlying sutures with or without human amniotic membrane (HAM) versus interrupted sutures with HAM. The effects of the retention method were compared as well as the effects of collagen concentration (13.7% to 15% RHCIII).

    RESULTS: All implanted corneas showed initial haze that cleared with time, resulting in corneas with optical clarity matching those of untreated controls. Biochemical analysis showed that by 12 months post operation, the initial RHCIII implants had been completely remodeled, as type I collagen, was the major collagenous protein detected, whereas no RHCIII could be detected. Histological analysis showed all implanted corneas exhibited regeneration of epithelial and stromal layers as well as nerves, along with touch sensitivity and tear production. Most neovascularization was seen in corneas stabilized by interrupted sutures.

    CONCLUSIONS: This showed that the surgical technique used does have a significant effect on the overall performance of corneal implants, overlying sutures caused less vascularization than interrupted sutures.

    TRANSLATIONAL RELEVANCE: Understanding the significance of the suturing technique can aid the selection of the most appropriate procedure when implanting artificial corneal substitutes. The same degree of regeneration, despite a higher collagen content indicates that future material development can progress toward stronger, more resistant implants.

    Keywords
    biomaterials, biosynthetic cornea, corneal regeneration, corneal transplantation, recombinant human collagen
    National Category
    Surgery
    Identifiers
    urn:nbn:se:uu:diva-364450 (URN)10.1167/tvst.3.2.6 (DOI)24749003 (PubMedID)
    Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2021-04-23
    2. Conductive PEDOT based coatings on microfibrous scaffolds: a nerve guide component
    Open this publication in new window or tab >>Conductive PEDOT based coatings on microfibrous scaffolds: a nerve guide component
    Show others...
    2018 (English)Manuscript (preprint) (Other (popular science, discussion, etc.))
    National Category
    Biomaterials Science
    Identifiers
    urn:nbn:se:uu:diva-364452 (URN)
    Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2018-10-29
    3. Mesenchymal Stromal Cells for the Treatment of Ischemic Injury and Vascular Trauma: A Systematic Review and Meta-Analysis
    Open this publication in new window or tab >>Mesenchymal Stromal Cells for the Treatment of Ischemic Injury and Vascular Trauma: A Systematic Review and Meta-Analysis
    Show others...
    2018 (English)Manuscript (preprint) (Other (popular science, discussion, etc.))
    National Category
    Other Clinical Medicine
    Identifiers
    urn:nbn:se:uu:diva-364451 (URN)
    Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2018-10-29
    4. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications.
    Open this publication in new window or tab >>Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications.
    Show others...
    2015 (English)In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 12, p. 70-80, article id S1742-7061(14)00486-3Article in journal (Refereed) Published
    Abstract [en]

    The implant-host interface is a critical element in guiding tissue or organ regeneration. We previously developed hydrogels comprising interpenetrating networks of recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) as substitutes for the corneal extracellular matrix that promote endogenous regeneration of corneal tissue. To render them functional for clinical application, we have now optimized their composition and thereby enhanced their mechanical properties. We have demonstrated that such optimized RHCIII-MPC hydrogels are suitable for precision femtosecond laser cutting to produce complementing implants and host surgical beds for subsequent tissue welding. This avoids the tissue damage and inflammation associated with manual surgical techniques, thereby leading to more efficient healing. Although we previously demonstrated in clinical testing that RHCIII-based implants stimulated cornea regeneration in patients, the rate of epithelial cell coverage of the implants needs improvement, e.g. modification of the implant surface. We now show that our 500μm thick RHCIII-MPC constructs comprising over 85% water are suitable for microcontact printing with fibronectin. The resulting fibronectin micropatterns promote cell adhesion, unlike the bare RHCIII-MPC hydrogel. Interestingly, a pattern of 30μm wide fibronectin stripes enhanced cell attachment and showed the highest mitotic rates, an effect that potentially can be utilized for faster integration of the implant. We have therefore shown that laboratory-produced mimics of naturally occurring collagen and phospholipids can be fabricated into robust hydrogels that can be laser profiled and patterned to enhance their potential function as artificial substitutes of donor human corneas.

    Keywords
    Collagen, Cornea, Hydrogel, Laser profiling, Surface modification
    National Category
    Biomaterials Science
    Identifiers
    urn:nbn:se:uu:diva-364449 (URN)10.1016/j.actbio.2014.10.035 (DOI)25448347 (PubMedID)
    Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2018-10-29
    5. Controlled Delivery of Human Cells by Temperature Responsive Microcapsules.
    Open this publication in new window or tab >>Controlled Delivery of Human Cells by Temperature Responsive Microcapsules.
    Show others...
    2015 (English)In: Journal of Functional Biomaterials, ISSN 2079-4983, E-ISSN 2079-4983, Vol. 6, no 2, p. 439-53Article in journal (Refereed) Published
    Abstract [en]

    Cell therapy is one of the most promising areas within regenerative medicine. However, its full potential is limited by the rapid loss of introduced therapeutic cells before their full effects can be exploited, due in part to anoikis, and in part to the adverse environments often found within the pathologic tissues that the cells have been grafted into. Encapsulation of individual cells has been proposed as a means of increasing cell viability. In this study, we developed a facile, high throughput method for creating temperature responsive microcapsules comprising agarose, gelatin and fibrinogen for delivery and subsequent controlled release of cells. We verified the hypothesis that composite capsules combining agarose and gelatin, which possess different phase transition temperatures from solid to liquid, facilitated the destabilization of the capsules for cell release. Cell encapsulation and controlled release was demonstrated using human fibroblasts as model cells, as well as a therapeutically relevant cell line-human umbilical vein endothelial cells (HUVECs). While such temperature responsive cell microcapsules promise effective, controlled release of potential therapeutic cells at physiological temperatures, further work will be needed to augment the composition of the microcapsules and optimize the numbers of cells per capsule prior to clinical evaluation.

    Keywords
    cell delivery, cell encapsulation, human fibroblast, human umbilical vein endothelial cells, hydrogel, microcapsules, temperature responsive
    National Category
    Biomaterials Science
    Identifiers
    urn:nbn:se:uu:diva-364448 (URN)10.3390/jfb6020439 (DOI)26096147 (PubMedID)
    Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2018-10-29
    Download full text (pdf)
    fulltext
    Download (jpg)
    presentationsbild
  • 50.
    Elbouazzaoui, Kenza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Nkosi, Funeka
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Ionic transport in solid-state composite poly(trimethylene carbonate)-Li6.7Al0.3La3Zr2O12 electrolytes: The interplay between surface chemistry and ceramic particle loading2023In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 462, article id 142785Article in journal (Refereed)
    Abstract [en]

    The ionic transport in solid-state composite electrolytes based on poly(trimethylene carbonate) (PTMC) with LiTFSI salt and garnet-type ion-conducting Li6.7Al0.3-La3Zr2O12 (LLZO) ceramic particles is here investigated for a range of different compositions. Positive effects on ionic conductivity have previously been reported for LLZO incorporated into poly(ethylene oxide) (PEO), but the origin of these effects is unclear since the inclusion of particles also affects polymer crystallinity. PTMC is, in contrast to PEO, a fully amorphous polymer, and therefore here chosen for the design of a more straight-forward composite electrolyte (CPE) system to study ionic transport. With LLZO loadings ranging from 5 to 70 wt%, the CPE with 30 wt% of LLZO exhibits the highest ionic conductivity with a cationic transference number of 0.94 at 60 degrees C. This is significantly higher than for the pristine PTMC polymer electrolyte. Generally, low to moderate LLZO loadings display a gradual increase of the ionic conductivity, transference number and also of the polymer-cation coordination number. The combined contributions of ionic transport along polymer-ceramic interfaces and Lewis acid-base interaction between the LLZO particles and the LiTFSI salt can explain this enhancement. With loadings of LLZO above 50 wt%, a detrimental effect on the ionic conductivity was however observed. This could be explained by agglomeration of ceramic particles, and by a partial coverage of LLZO particles with a Li2CO3 layer. Consequently, inner polymer-particle interfaces become more resistive, and Li+conduction is prevented along interfacial pathways. The presence of Li2CO3 has more detrimental impact at higher LLZO loadings, since inter-particle connectivity will be hampered, and this is vital for efficient ionic transport. This suggests that there is an interplay between the LLZO particle surface chemistry with its loading, which ultimately controls the Li-ion transport.

    Download full text (pdf)
    fulltext
12345 1 - 50 of 240
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf