uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 829
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Agnas, Axel Jönses Bernard
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Non-Independent Mate Choice in Female Humans (Homo sapiens): Progression to the Field 2016Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
    Abstract [en]

    There is much evidence that mate-choice decisions made by humans are affected by social/contextual information. Women seem to rate men portrayed in a relationship as more desirable than the same men when portrayed as single. Laboratory studies have found evidence suggesting that human mate choice, as in other species, is dependent on the mate choice decisions made by same-sex rivals. Even though non-independent mate choice is an established and well-studied area of mate choice, very few field studies have been performed. This project aims to test whether women’s evaluation of potential mates desirability is dependent/non-independent of same-sex rivals giving the potential mates sexual interest. This is the first field study performed in a modern human’s natural habitat aiming to test for non- independent mate choice in humans.

    No desirability enhancement effect was found. The possibilities that earlier studies have found an effect that is only present in laboratory environments or have measured effects other than non-independent mate choice are discussed. I find differences in experimental design to be the most likely reason why the present study failed to detect the effect found in previous studies. This field study, the first of its sort, has generated important knowledge for future experimenters, where the most important conclusion is that major limitations in humans ability to register and remember there surrounding should be taken in consideration when designing any field study investigating human mate choice. 

  • 2.
    Agnolin, Federico L.
    et al.
    Museo Argentino Ciencias Nat Bernardino Rivadavia, Lab Anat Comparada & Evoluc Vertebrados, Buenos Aires, DF, Argentina.; Univ Maimonides, CEBBAD, Dept Ciencias Nat & Antropol, Fundac Hist Nat Felix de Azara, Buenos Aires, DF, Argentina.
    Powell, Jaime E.
    Inst Miguel Lillo, RA-4000 San Miguel De Tucuman, Tucuman, Argentina.; Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
    Novas, Fernando E.
    Museo Argentino Ciencias Nat Bernardino Rivadavia, Lab Anat Comparada & Evoluc Vertebrados, Buenos Aires, DF, Argentina.; Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
    Kundrát, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    New alvarezsaurid (Dinosauria, Theropoda) from Latest Cretaceous of North-western Patagonia with associated eggs2012In: Cretaceous research (Print), ISSN 0195-6671, E-ISSN 1095-998X, Vol. 35, 33-56 p.Article in journal (Refereed)
    Abstract [en]

    The Alvarezsauridae represents a branch of peculiar basal coelurosaurs with an increasing representationof their Cretaceous radiation distributed worldwide. Here we describe a new member of the group, Bonapartenykus ultimus gen. et sp. nov. from Campanian-Maastrichtian strata of Northern Patagonia, Argentina. Bonapartenykus is represented by a single, incomplete postcranial skeleton. The morphologyof the known skeletal elements suggests close affinities with the previously described taxon from Patagonia, Patagonykus, and both conform to a new clade, here termed Patagonykinae nov. Two incomplete eggs have been discovered in association with the skeletal remains of Bonapartenykus, andseveral clusters of broken eggshells of the same identity were also found in a close proximity. These belong to the new ooparataxon Arriagadoolithus patagoniensis of the new oofamily Arriagadoolithidae, which provides first insights into unique shell microstructure and fungal contamination of eggs laid by alvarezsaurid theropods. The detailed study of the eggs sheds new light on the phylogenetic position of alvarezsaurids within the Theropoda, and the evolution of eggs among Coelurosauria. We suggest thatplesiomorphic alvarezsaurids survived in Patagonia until the latest Cretaceous, whereas these basal forms became extinct elsewhere.

  • 3. Agnès E., Sjöstrand
    et al.
    Per, Sjödin
    Carina, Schlebusch
    Thijessen, Naidoo
    Lucie, Gattepaille
    Nina, Hollfelder
    Torsten, Günther
    Mattias, Jakobsson
    Patterns of local adaptation in AfricansManuscript (preprint) (Other academic)
  • 4. Agnès E., Sjöstrand
    et al.
    Per, Sjödin
    Farhad, Shayimkulov
    Tatiana, Hegay
    Michael G. B., Blum
    Evelyne, Heyer
    Mattias, Jakobsson
    Taste and lifestyle: insights from SNP-chip data.Manuscript (preprint) (Other academic)
  • 5.
    Ah-King, Malin
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Arts, Centre for Gender Research. Dept Ecol & Evolutionary Biol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA.;Stockholm Univ, Dept Ethnol Hist Relig & Gender Studies, Univ Vagen 10 E, SE-10691 Stockholm, Sweden..
    Gowaty, Patricia Adair
    Dept Ecol & Evolutionary Biol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA.;Smithsonian Trop Res Inst, DPO, Box 0948,AA 34002-9998, Washington, DC USA.;Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA..
    A conceptual review of mate choice: stochastic demography, within-sex phenotypic plasticity, and individual flexibility2016In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 6, no 14, 4607-4642 p.Article, review/survey (Refereed)
    Abstract [en]

    Mate choice hypotheses usually focus on trait variation of chosen individuals. Recently, mate choice studies have increasingly attended to the environmental circumstances affecting variation in choosers' behavior and choosers' traits. We reviewed the literature on phenotypic plasticity in mate choice with the goal of exploring whether phenotypic plasticity can be interpreted as individual flexibility in the context of the switch point theorem, SPT (Gowaty and Hubbell ). We found >3000 studies; 198 were empirical studies of within-sex phenotypic plasticity, and sixteen showed no evidence of mate choice plasticity. Most studies reported changes from choosy to indiscriminate behavior of subjects. Investigators attributed changes to one or more causes including operational sex ratio, adult sex ratio, potential reproductive rate, predation risk, disease risk, chooser's mating experience, chooser's age, chooser's condition, or chooser's resources. The studies together indicate that choosiness of potential mates is environmentally and socially labile, that is, induced - not fixed - in the choosy sex with results consistent with choosers' intrinsic characteristics or their ecological circumstances mattering more to mate choice than the traits of potential mates. We show that plasticity-associated variables factor into the simpler SPT variables. We propose that it is time to complete the move from questions about within-sex plasticity in the choosy sex to between- and within-individual flexibility in reproductive decision-making of both sexes simultaneously. Currently, unanswered empirical questions are about the force of alternative constraints and opportunities as inducers of individual flexibility in reproductive decision-making, and the ecological, social, and developmental sources of similarities and differences between individuals. To make progress, we need studies (1) of simultaneous and symmetric attention to individual mate preferences and subsequent behavior in both sexes, (2) controlled for within-individual variation in choice behavior as demography changes, and which (3) report effects on fitness from movement of individual's switch points.

  • 6.
    Akiyama, Reiko
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Life History and Tolerance and Resistance against Herbivores in Natural Populations of Arabidopsis thaliana2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, I combined observational studies with field and greenhouse experiments to examine selection on life history traits and variation in tolerance and resistance against herbivores in natural populations of the annual herb Arabidopsis thaliana in its native range. I investigated (1) phenotypic selection on flowering time and plant size, (2) the effects of timing of germination on plant fitness, (3) the effect of leaf damage on seed production, and (4) correlations between resistance against a specialist and a generalist insect herbivore.

    In all three study populations, flowering time was negatively related to plant fitness, but in only one of the populations, significant selection on flowering time was detected when controlling for size prior to the flowering season. The results show that correlations between flowering time and plant fecundity may be confounded by variation in plant size prior to the reproductive season.

    A field experiment detected conflicting selection on germination time: Early germination was associated with low seedling survival, but also with large leaf rosette before winter and high survival and fecundity among established plants. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination, and that the optimal timing of germination should vary in space and time as a function of the relative strength of selection acting during different life-history stages.

    Experimental leaf damage demonstrated that tolerance to damage was lowest among vegetative plants early in the season, and highest among flowering plants later in the season. Given similar damage levels, leaf herbivores feeding on plants before flowering should thus exert stronger selection on defence traits than those feeding on plants during flowering.

    Resistance against larval feeding by the specialist Plutella xylostella was negatively correlated with resistance against larval feeding by the generalist Mamestra brassicae and with resistance against oviposition by P. xylostella when variation in resistance was examined within and among two Swedish and two Italian A. thaliana populations. The results suggest that negative correlations between resistance against different herbivores and different life-history stages of herbivores may contribute to the maintenance of genetic variation in resistance.

    List of papers
    1. Selection on flowering time in three natural populations of Arabidopsis thaliana
    Open this publication in new window or tab >>Selection on flowering time in three natural populations of Arabidopsis thaliana
    (English)Manuscript (preprint) (Other academic)
    National Category
    Ecology Evolutionary Biology Botany
    Research subject
    Biology with specialization in Ecological Botany
    Identifiers
    urn:nbn:se:uu:diva-159506 (URN)
    Funder
    Swedish Research Council
    Available from: 2011-10-06 Created: 2011-10-03 Last updated: 2011-11-10
    2. Conflicting selection on the timing of germination in a natural population of Arabidopsis thaliana
    Open this publication in new window or tab >>Conflicting selection on the timing of germination in a natural population of Arabidopsis thaliana
    2014 (English)In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 27, no 1, 193-199 p.Article in journal (Refereed) Published
    Abstract [en]

    The timing of germination is a key life-history trait that may strongly influence plant fitness and that sets the stage for selection on traits expressed later in the life cycle. In seasonal environments, the period favourable for germination and the total length of the growing season are limited. The optimal timing of germination may therefore be governed by conflicting selection through survival and fecundity. We conducted a field experiment to examine the effects of timing of germination on survival, fecundity and overall fitness in a natural population of the annual herb Arabidopsis thaliana in north-central Sweden. Seedlings were transplanted at three different times in late summer and in autumn covering the period of seed germination in the study population. Early germination was associated with low seedling survival, but also with high survival and fecundity among established plants. The advantages of germinating early more than balanced the disadvantage and selection favoured early germination. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination and that the optimal timing of germination should vary in space and time as a function of the direction and strength of selection acting during different life-history stages.

    National Category
    Ecology Evolutionary Biology Botany
    Research subject
    Biology with specialization in Ecological Botany
    Identifiers
    urn:nbn:se:uu:diva-159664 (URN)10.1111/jeb.12293 (DOI)000329254500018 ()
    Funder
    Swedish Research Council
    Available from: 2011-10-06 Created: 2011-10-06 Last updated: 2017-12-08Bibliographically approved
    3. Magnitude and timing of leaf damage affect seed production in a natural population of Arabidopsis thaliana (Brassicaceae)
    Open this publication in new window or tab >>Magnitude and timing of leaf damage affect seed production in a natural population of Arabidopsis thaliana (Brassicaceae)
    2012 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 1, e30015- p.Article in journal (Refereed) Published
    Abstract [en]

    Background: The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size.

    Methodology/Principal Findings: In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected.

    Conclusions/Significance: The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels.

    National Category
    Ecology Evolutionary Biology Botany
    Research subject
    Biology with specialization in Ecological Botany
    Identifiers
    urn:nbn:se:uu:diva-159665 (URN)10.1371/journal.pone.0030015 (DOI)000301457200028 ()
    Funder
    Swedish Research Council
    Available from: 2011-10-06 Created: 2011-10-06 Last updated: 2017-12-08Bibliographically approved
    4. Genetic variation in leaf morphology and resistance against specialist and generalist insect herbivores in natural populations of Arabidopsis thaliana
    Open this publication in new window or tab >>Genetic variation in leaf morphology and resistance against specialist and generalist insect herbivores in natural populations of Arabidopsis thaliana
    (English)Manuscript (preprint) (Other academic)
    National Category
    Ecology Evolutionary Biology Botany
    Research subject
    Biology with specialization in Ecological Botany
    Identifiers
    urn:nbn:se:uu:diva-159685 (URN)
    Funder
    Swedish Research Council
    Available from: 2011-10-06 Created: 2011-10-06 Last updated: 2011-11-10
  • 7.
    Akiyama, Reiko
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Noack, Sibylle
    Department of Zoology, Stockholm University.
    Ågren, Jon
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Genetic variation in leaf morphology and resistance against specialist and generalist insect herbivores in natural populations of Arabidopsis thalianaManuscript (preprint) (Other academic)
  • 8.
    Akiyama, Reiko
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ågren, Jon
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Conflicting selection on the timing of germination in a natural population of Arabidopsis thaliana2014In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 27, no 1, 193-199 p.Article in journal (Refereed)
    Abstract [en]

    The timing of germination is a key life-history trait that may strongly influence plant fitness and that sets the stage for selection on traits expressed later in the life cycle. In seasonal environments, the period favourable for germination and the total length of the growing season are limited. The optimal timing of germination may therefore be governed by conflicting selection through survival and fecundity. We conducted a field experiment to examine the effects of timing of germination on survival, fecundity and overall fitness in a natural population of the annual herb Arabidopsis thaliana in north-central Sweden. Seedlings were transplanted at three different times in late summer and in autumn covering the period of seed germination in the study population. Early germination was associated with low seedling survival, but also with high survival and fecundity among established plants. The advantages of germinating early more than balanced the disadvantage and selection favoured early germination. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination and that the optimal timing of germination should vary in space and time as a function of the direction and strength of selection acting during different life-history stages.

  • 9.
    Akiyama, Reiko
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ågren, Jon
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Magnitude and timing of leaf damage affect seed production in a natural population of Arabidopsis thaliana (Brassicaceae)2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 1, e30015- p.Article in journal (Refereed)
    Abstract [en]

    Background: The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size.

    Methodology/Principal Findings: In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected.

    Conclusions/Significance: The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels.

  • 10.
    Akiyama, Reiko
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ågren, Jon
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Selection on flowering time in three natural populations of Arabidopsis thalianaManuscript (preprint) (Other academic)
  • 11.
    Alatalo, Juha M.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Little, Chelsea J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Jagerbrand, Annika K.
    Molau, Ulf
    Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change2014In: PeerJ, ISSN 2167-8359, E-ISSN 2167-8359, Vol. 2, e406- p.Article in journal (Refereed)
    Abstract [en]

    We studied the impact of simulated global change on a high alpine meadow plant community. Specifically, we examined whether short-term (5 years) responses are good predictors for medium-term (7 years) changes in the system by applying a factorial warming and nutrient manipulation to 20 plots in Latnjajaure, subarctic Sweden. Seven years of experimental warming and nutrient enhancement caused dramatic shifts in dominance hierarchies in response to the nutrient and the combined warming and nutrient enhancement treatments. Dominance hierarchies in the meadow moved from a community being dominated by cushion plants, deciduous, and evergreen shrubs to a community being dominated by grasses, sedges, and forbs. Short-termresponses were shown to be inconsistent in their ability to predict medium-term responses for most functional groups, however, grasses showed a consistent and very substantial increase in response to nutrient addition over the seven years. The non-linear responses over time point out the importance of longer-term studies with repeated measurements to be able to better predict future changes. Forecasted changes to temperature and nutrient availability have implications for trophic interactions, and may ultimately influence the access to and palatability of the forage for grazers. Depending on what anthropogenic change will be most pronounced in the future (increase in nutrient deposits, warming, or a combination of them both), different shifts in community dominance hierarchies may occur. Generally, this study supports the productivity-diversity relationship found across arctic habitats, with community diversity peaking in mid-productivity systems and degrading as nutrient availability increases further. This is likely due the increasing competition in plant-plant interactions and the shifting dominance structure with grasses taking over the experimental plots, suggesting that global change could have high costs to biodiversity in the Arctic.

  • 12.
    Alavioon, Ghazal
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Hotzy, Cosima
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Nakhro, Khriezhanuo
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Rudolf, Sandra
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Scofield, Douglas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Zajitschek, Susanne
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Spanish Natl Res Council, Donana Biol Stn, Seville 41092, Spain.
    Maklakov, Alex A
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Univ East Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England.
    Immler, Simone
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Univ East Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England.
    Haploid selection within a single ejaculate increases offspring fitness2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, no 30, 8053-8058 p.Article in journal (Refereed)
    Abstract [en]

    An inescapable consequence of sex in eukaryotes is the evolution of a biphasic life cycle with alternating diploid and haploid phases. The occurrence of selection during the haploid phase can have far-reaching consequences for fundamental evolutionary processes including the rate of adaptation, the extent of inbreeding depression, and the load of deleterious mutations, as well as for applied research into fertilization technology. Although haploid selection is well established in plants, current dogma assumes that in animals, intact fertile sperm within a single ejaculate are equivalent at siring viable offspring. Using the zebrafish Danio rerio, we show that selection on phenotypic variation among intact fertile sperm within an ejaculate affects offspring fitness. Longer-lived sperm sired embryos with increased survival and a reduced number of apoptotic cells, and adult male offspring exhibited higher fitness. The effect on embryo viability was carried over into the second generation without further selection and was equally strong in both sexes. Sperm pools selected by motile phenotypes differed genetically at numerous sites throughout the genome. Our findings clearly link within-ejaculate variation in sperm phenotype to offspring fitness and sperm genotype in a vertebrate and have major implications for adaptive evolution.

  • 13.
    Alexander, Michelle
    et al.
    Univ York, York YO10 5DD, N Yorkshire, England.;Univ Aberdeen, Sch Geosci, Dept Archaeol, Aberdeen AB24 3UF, Scotland..
    Ho, Simon Y. W.
    Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia..
    Molak, Martyna
    Polish Acad Sci, Museum & Inst Zool, PL-00679 Warsaw, Poland..
    Barnett, Ross
    Palaeogen & Bioarchaeol Res Network, Res Lab Archaeol, Oxford OX1 3QY, England..
    Carlborg, Örjan
    Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Dorshorst, Ben
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Virginia Tech, Dept Anim & Poultry Sci, Blacksburg, VA 24061 USA..
    Honaker, Christa
    Virginia Tech, Dept Anim & Poultry Sci, Blacksburg, VA 24061 USA..
    Besnier, Francois
    Inst Marine Res, Sect Populat Genet, N-5024 Bergen, Norway..
    Wahlberg, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Dobney, Keith
    Univ Aberdeen, Sch Geosci, Dept Archaeol, Aberdeen AB24 3UF, Scotland..
    Siegel, Paul
    Virginia Tech, Dept Anim & Poultry Sci, Blacksburg, VA 24061 USA..
    Andersson, Leif
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Swedish Univ Agr Sci, Dept Anim Breeding & Genet, S-75007 Uppsala, Sweden..
    Larson, Greger
    Palaeogen & Bioarchaeol Res Network, Res Lab Archaeol, Oxford OX1 3QY, England..
    Mitogenomic analysis of a 50-generation chicken pedigree reveals a rapid rate of mitochondrial evolution and evidence for paternal mtDNA inheritance2015In: Biology Letters, ISSN 1744-9561, E-ISSN 1744-957X, Vol. 11, no 10, 20150561Article in journal (Refereed)
    Abstract [en]

    Mitochondrial genomes represent a valuable source of data for evolutionary research, but studies of their short-term evolution have typically been limited to invertebrates, humans and laboratory organisms. Here we present a detailed study of 12 mitochondrial genomes that span a total of 385 transmissions in a well-documented 50-generation pedigree in which two lineages of chickens were selected for low and high juvenile body weight. These data allowed us to test the hypothesis of time-dependent evolutionary rates and the assumption of strict maternal mitochondrial transmission, and to investigate the role of mitochondrial mutations in determining phenotype. The identification of a non-synonymous mutation in ND4L and a synonymous mutation in CYTB, both novel mutations in Gallus, allowed us to estimate a molecular rate of 3.13 x 10(-7) mutations/site/year (95% confidence interval 3.75 x 10(-8)-1.12 x 10(-6)). This is substantially higher than avian rate estimates based upon fossil calibrations. Ascertaining which of the two novel mutations was present in an additional 49 individuals also revealed an instance of paternal inheritance of mtDNA. Lastly, an association analysis demonstrated that neither of the point mutations was strongly associated with the phenotypic differences between the two selection lines. Together, these observations reveal the highly dynamic nature of mitochondrial evolution over short time periods.

  • 14. Alho, J. S.
    et al.
    Herczeg, G.
    Laugen, A. T.
    Raesaenen, K.
    Laurila, Anssi
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.
    Merila, J.
    Allen's rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient2011In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 24, no 1, 59-70 p.Article in journal (Refereed)
    Abstract [en]

    Ecogeographical rules linking climate to morphology have gained renewed interest because of climate change. Yet few studies have evaluated to what extent geographical trends ascribed to these rules have a genetic, rather than environmentally determined, basis. This applies especially to Allen's rule, which states that the relative extremity length decreases with increasing latitude. We studied leg length in the common frog (Rana temporaria) along a 1500 km latitudinal gradient utilizing wild and common garden data. In the wild, the body size-corrected femur and tibia lengths did not conform to Allen's rule but peaked at mid-latitudes. However, the ratio of femur to tibia length increased in the north, and the common garden data revealed a genetic cline consistent with Allen's rule in some trait and treatment combinations. While selection may have shortened the leg length in the north, the genetic trend seems to be partially masked by environmental effects.

  • 15.
    Amcoff, Mirjam
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Fishing for Females: Sensory Exploitation in the Swordtail Characin2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Mate choice plays an important role in sexual selection and speciation. The evolution of mate choice is intriguing in cases where choosy individuals gain little except for genetic material from the mate and where the trait used as a criterion for the choice is costly to its bearer. The sensory exploitation hypothesis is an interesting idea that applies to such cases because it suggests that sexual preferences may arise as side-effects of preferences that are under selection in other contexts. The role of mate choice in speciation is strong but is debated because the reasons for population divergence in mate preferences and sexual traits are sometimes hard to explain. Also in this context sensory exploitation offers a potential explanation in that a link between natural and sexual selection may result in divergence in sexual selection whenever populations differ in natural selection.

    In this thesis, I test several aspects of this hypothesis in a species of fish, the swordtail characin (Corynopoma riisei). In this species males display a flag-like ornament that grows from the operculum. Because females respond to this ornament by biting at it, it has been proposed to act as a food-mimic. By manipulating female food type and quantity, and testing the resulting female preference for the male ornament, I find support for the theory that the preference has evolved through sensory exploitation and that females indeed appear to relate the ornament to a food item. Furthermore, I show that sensory exploitation can lead to morphological divergence among natural populations in this species. Apart from the flag-ornament, other courtship signals are also investigated. The results show that the relative importance of different signals may vary depending on receiver motivation. This suggests that various aspects of both male courtship signals and the conditions during which they are being signalled should be considered to gain a full understanding of mate choice and its role in sexual selection and speciation.

    List of papers
    1. Does female feeding motivation affect the response to a food-mimicking male ornament in the swordtail characin Corynopoma riisei?
    Open this publication in new window or tab >>Does female feeding motivation affect the response to a food-mimicking male ornament in the swordtail characin Corynopoma riisei?
    2013 (English)In: Journal of Fish Biology, ISSN 0022-1112, E-ISSN 1095-8649, Vol. 83, no 2, 343-354 p.Article in journal (Refereed) Published
    Abstract [en]

    Female response to various aspects of male trait morphology and the effect of female feeding motivation were investigated in the swordtail characin Corynopoma riisei, a species where males are equipped with a flag-like food-mimicking ornament that grows from the operculum. Unfed females responded more strongly to the male ornament and showed a stronger preference for larger ornaments than did fed females. Females were shown not to discriminate between artificial male ornaments of either undamaged or damaged shape.

    Keyword
    diet, mate preference, plasticity, sensory exploitation, signalling
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:uu:diva-206572 (URN)10.1111/jfb.12175 (DOI)000322547900007 ()
    Available from: 2013-09-02 Created: 2013-09-02 Last updated: 2017-12-06Bibliographically approved
    2. Sensory exploitation and plasticity in female mate choice in the swordtail characin
    Open this publication in new window or tab >>Sensory exploitation and plasticity in female mate choice in the swordtail characin
    2013 (English)In: Animal Behaviour, ISSN 0003-3472, E-ISSN 1095-8282, Vol. 85, no 5, 891-898 p.Article in journal (Refereed) Published
    Abstract [en]

    Despite extensive research in the field of sexual selection, the evolutionary origin and maintenance of preferences for sexual ornaments are still debated. Recent studies have pointed out that plasticity in mate choice might be more common than previously thought, but little is still known about the factors that affect such plasticity. The swordtail characin, Corynopoma riisei, is a tropical fish species in which males use a food-mimicking ornament to attract females. We tested whether ecological factors, more specifically prior foraging experience, can affect female preference for male ornaments. For this, we habituated females on a diet consisting of either red-coloured food or standard-coloured green food items and then we tested whether female preferences for artificially red-coloured male ornaments matched their previous foraging experience. We found a strong effect of food treatment: females trained on red food showed a stronger response to males with red-coloured ornaments than females trained on green food. Our results show that ecological variation can generate divergence of female preferences for male ornaments and that the response in preference to environmental change can be rapid if the bias is partly learnt.

    Keyword
    Corynopoma riisei, diet, mate choice, sensory exploitation, sexual selection, swordtail characin
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:uu:diva-203305 (URN)10.1016/j.anbehav.2013.02.001 (DOI)000319332000004 ()
    Available from: 2013-07-08 Created: 2013-07-08 Last updated: 2017-12-06Bibliographically approved
    3. Diversification of a Food-Mimicking Male Ornament via Sensory Drive
    Open this publication in new window or tab >>Diversification of a Food-Mimicking Male Ornament via Sensory Drive
    2012 (English)In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 22, no 15, 1440-1443 p.Article in journal (Refereed) Published
    Abstract [en]

    The evolutionary divergence of sexual signals is often important during the formation of new animal species, but our understanding of the origin of signal diversity is limited [1, 2]. Sensory drive, the optimization of communication signal efficiency through matching to the local environment, has been highlighted as a potential promoter of diversification and speciation [3]. The swordtail characin (Corynopoma riisei) is a tropical fish in which males display a flag-like ornament that elicits female foraging behavior during courtship. We show that the shape of the male ornament covaries with female diet across natural populations. More specifically, natural populations in which the female diet is more dominated by ants exhibit male ornaments more similar to the shape of an ant. Feeding experiments confirm that females habituated to a diet of ants prefer to bite at male ornaments from populations with a diet more dominated by ants. Our results show that the male ornament functions as a "fishing lure" that is diversifying in shape to match local variation in female search images employed during foraging. This direct link between variation in female feeding ecology and the evolutionary diversification of male sexual ornaments suggests that sensory drive may be a common engine of signal divergence.

    National Category
    Biological Sciences
    Identifiers
    urn:nbn:se:uu:diva-181121 (URN)10.1016/j.cub.2012.05.050 (DOI)000307415000026 ()
    Available from: 2012-09-19 Created: 2012-09-17 Last updated: 2017-12-07Bibliographically approved
    4. Courtship signalling with a labile bilateral signal: males show their best side
    Open this publication in new window or tab >>Courtship signalling with a labile bilateral signal: males show their best side
    2009 (English)In: Behavioral Ecology and Sociobiology, ISSN 0340-5443, E-ISSN 1432-0762, Vol. 63, no 12, 1717-1725 p.Article in journal (Refereed) Published
    Abstract [en]

    Asymmetries in courtship signals can result from both developmental instability during ontogeny and from temporary or permanent damage following mating, fighting, or interactions with predators. These two types of asymmetries, which can be divided into fluctuating asymmetry (FA) and damage asymmetry (DA), have both been suggested to play an important role in mate choice as potential honest indicators of phenotypic and/or genetic quality, while at the same time, DA may affect ornament asymmetry in a random manner. Interestingly, despite the massive research effort that has been devoted to the study of asymmetry during the past decades, very little is known about how an individual's behaviour relates to asymmetry. Here, we measure and characterise asymmetry in morphological courtship signals in Corynopoma riisei, a fish where males carry elaborate paddle-like appendices on each side of the body that they display in front of females during courtship. Moreover, we investigate whether male courtship display, employing this bilateral morphological trait, reflects trait asymmetry. Finally, we assess whether males respond to phenotypic manipulations of DA with corresponding changes in courtship behaviour. We show that male display behaviour is asymmetric in a manner that reflects asymmetry of their morphological courtship trait and that male display behaviour responds to manipulations of asymmetry of these paddles. Our results thus suggest that males preferentially use their best side and, hence, that males respond adaptively to temporary changes in signal trait asymmetry.

    Keyword
    Sexual signalling, Sexual selection, Lateralization, Mate choice, Sensory bias, Indicator, Self-awareness
    National Category
    Biological Sciences
    Identifiers
    urn:nbn:se:uu:diva-127482 (URN)10.1007/s00265-009-0785-7 (DOI)000270684200003 ()
    Available from: 2010-07-15 Created: 2010-07-13 Last updated: 2017-12-12Bibliographically approved
    5. Multiple male sexual signals and female responsiveness in the swordtail characin, Corynopoma riisei
    Open this publication in new window or tab >>Multiple male sexual signals and female responsiveness in the swordtail characin, Corynopoma riisei
    2015 (English)In: Environmental Biology of Fishes, ISSN 0378-1909, E-ISSN 1573-5133, Vol. 98, no 7, 1731-1740 p.Article in journal (Refereed) Published
    Abstract [en]

    In the courtship process, multiple signals are often used between the signaller and the receiver. Here we describe female response to multiple male visual morphological and behavioural signals in the swordtail characin, Corynopoma riisei. The swordtail characin is a species in which males display several morphological ornaments as well as a rich courtship repertoire. Our results show that high courtship intensity was associated with an increased female response towards the male ornament, increased number of mating attempts and a reduction in female aggression. The morphological aspects investigated here did not seem to correlate with female response. This may indicate that, when both behaviour and morphology are considered simultaneously, courtship behaviour may have priority over morphological cues in this species.

    Keyword
    courtship, multiple signalling, visual cues, morphology, mate choice
    National Category
    Evolutionary Biology
    Research subject
    Biology with specialization in Animal Ecology
    Identifiers
    urn:nbn:se:uu:diva-207333 (URN)10.1007/s10641-015-0388-2 (DOI)000355620700001 ()
    Available from: 2013-09-12 Created: 2013-09-12 Last updated: 2017-12-06Bibliographically approved
  • 16.
    Amcoff, Mirjam
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Kolm, Niclas
    Multiple male sexual signals and female responsiveness in the swordtail characin, Corynopoma riisei2015In: Environmental Biology of Fishes, ISSN 0378-1909, E-ISSN 1573-5133, Vol. 98, no 7, 1731-1740 p.Article in journal (Refereed)
    Abstract [en]

    In the courtship process, multiple signals are often used between the signaller and the receiver. Here we describe female response to multiple male visual morphological and behavioural signals in the swordtail characin, Corynopoma riisei. The swordtail characin is a species in which males display several morphological ornaments as well as a rich courtship repertoire. Our results show that high courtship intensity was associated with an increased female response towards the male ornament, increased number of mating attempts and a reduction in female aggression. The morphological aspects investigated here did not seem to correlate with female response. This may indicate that, when both behaviour and morphology are considered simultaneously, courtship behaviour may have priority over morphological cues in this species.

  • 17.
    Ament Velásquez, Sandra Lorena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Genomic insights into the reproductive biology of Icmadophilaceae species (lichenized ascomycetes)2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Sexual reproduction or its absence has significant consequences for the evolutionary potential of a species, but little is known of the molecular basis of mating systems in non-model organisms. In Fungi, an extremely diverse and ecologically important group of Eukaryotes, sexual identity is regulated by mating type (MAT) genes with specific protein domains. The MAT genes determine if a species is capable of selfing (homothallism) or not (heterothallism). Among Fungi, almost one fifth of the species establish symbiotic associations with algae or cyanobacteria, that is, they form lichens. Yet, very few studies have explored the reproductive genetics of lichenized species. In this work, I extended current research to a poorly known family of lichen-forming fungi: the Icmadophilaceae. I used Next Generation Sequencing (NGS) genomic and transcriptomic data to produce gene models of the MAT genes and its flanking regions of four representative species. I found that the putative asexual Thamnolia vermicularis and Siphula ceratites, as well as the sexual Dibaeis baeomyces have a gene configuration concordant with heterothallism, while the sexual Icmadophila ericetorum is most likely homothallic. Additionally, I applied a number of methods to detect recombination as a proxy for cryptic sex in T. vermiculars populations from the Northern Hemisphere. Like previous studies, I found no evidence of recombination and very little genetic variation, which is at odds with the recovered structure of the MAT locus. On the other hand, a preliminary exploration of the GC content of the metagenome (including all the genomes within the lichen thallus) of S. ceratites revealed that the symbiotic association involves Alphaproteobacteria, as has been described before for taxonomically unrelated lichens but never before for this species. Overall, my results offer a wealth of information for new and more advance research into the reproductive and evolutionary biology of Icmadophilaceae species, an unexplored portion of fungal biodiversity.

  • 18.
    Ament-Velasquez, Sandra Lorena
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology. Univ Montpellier, Inst Evolutionary Sci, CNRS, IRD,EPHE, Pl Eugene Bataillon, F-34095 Montpellier, France..
    Figuet, E.
    Univ Montpellier, Inst Evolutionary Sci, CNRS, IRD,EPHE, Pl Eugene Bataillon, F-34095 Montpellier, France..
    Ballenghien, M.
    Univ Montpellier, Inst Evolutionary Sci, CNRS, IRD,EPHE, Pl Eugene Bataillon, F-34095 Montpellier, France..
    Zattara, E. E.
    Indiana Univ, Dept Biol, 107 S Indiana Ave, Bloomington, IN 47405 USA.;Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, 10th St & Constitut Ave NW, Washington, DC 20560 USA..
    Norenburg, J. L.
    Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, 10th St & Constitut Ave NW, Washington, DC 20560 USA..
    Fernandez-Alvarez, F. A.
    CSIC Barcelona, Inst Ciencies Mar, Barcelona 08003, Spain..
    Bierne, J.
    Univ Reims, Lab Biol Cellulaire & Mol, 9 Blvd Paix, F-51100 Reims, France..
    Bierne, N.
    Univ Montpellier, Inst Evolutionary Sci, CNRS, IRD,EPHE, Pl Eugene Bataillon, F-34095 Montpellier, France..
    Galtier, N.
    Univ Montpellier, Inst Evolutionary Sci, CNRS, IRD,EPHE, Pl Eugene Bataillon, F-34095 Montpellier, France..
    Population genomics of sexual and asexual lineages in fissiparous ribbon worms (Lineus, Nemertea): hybridization, polyploidy and the Meselson effect2016In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 25, no 14, 3356-3369 p.Article in journal (Refereed)
    Abstract [en]

    Comparative population genetics in asexual vs. sexual species offers the opportunity to investigate the impact of asexuality on genome evolution. Here, we analyse coding sequence polymorphism and divergence patterns in the fascinating Lineus ribbon worms, a group of marine, carnivorous nemerteans with unusual regeneration abilities, and in which asexual reproduction by fissiparity is documented. The population genomics of the fissiparous L. pseudolacteus is characterized by an extremely high level of heterozygosity and unexpectedly elevated pi(N)/pi(S) ratio, in apparent agreement with theoretical expectations under clonal evolution. Analysis of among-species allele sharing and read-count distribution, however, reveals that L. pseudolacteus is a triploid hybrid between Atlantic populations of L. sanguineus and L. lacteus. We model and quantify the relative impact of hybridity, polyploidy and asexuality on molecular variation patterns in L. pseudolacteus and conclude that (i) the peculiarities of L. pseudolacteus population genomics result in the first place from hybridization and (ii) the accumulation of new mutations through the Meselson effect is more than compensated by processes of heterozygosity erosion, such as gene conversion or gene copy loss. This study illustrates the complexity of the evolutionary processes associated with asexuality and identifies L. pseudolacteus as a promising model to study the first steps of polyploid genome evolution in an asexual context.

  • 19. Andersen, G
    et al.
    Merico, A
    Björnberg, O
    Andersen, B
    Schnackerz, K D
    Dobritzsch, Doreen
    Karolinska Institutet.
    Piskur, J
    Compagno, C
    Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs2006In: Nucleosides, Nucleotides & Nucleic Acids, ISSN 1525-7770, E-ISSN 1532-2335, Vol. 25, no 9-11, 991-996 p.Article in journal (Refereed)
    Abstract [en]

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage.

  • 20.
    Andersson, Dan I.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Jerlström-Hultqvist, Jon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Näsvall, Joakim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Evolution of New Functions De Novo and from Preexisting Genes2015In: Cold Spring Harbor Perspectives in Biology, ISSN 1943-0264, E-ISSN 1943-0264, Vol. 7, no 6, a017996Article, review/survey (Refereed)
    Abstract [en]

    How the enormous structural and functional diversity of new genes and proteins was generated (estimated to be 10^10-€“10^12 different proteins in all organisms on earth [Choi I-G, Kim S-H. 2006. Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci 103: 14056–14061] is a central biological question that has a long and rich history. Extensive work during the last 80 years have shown that new genes that play important roles in lineage-specific phenotypes and adaptation can originate through a multitude of different mechanisms, including duplication, lateral gene transfer, gene fusion/fission, and de novo origination. In this review, we focus on two main processes as generators of new functions: evolution of new genes by duplication and divergence of pre-existing genes and de novo gene origination in which a whole protein-coding gene evolves from a noncoding sequence.

  • 21.
    Andersson, Jan O
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology. Mikrobiologi.
    A review of "Microbial Phylogeny and Evolution: Concepts and Controversies"2006In: Systematic Biology, ISSN 1063-5157, E-ISSN 1076-836X, Vol. 55, no 2, 359-361 p.Article, book review (Other (popular science, discussion, etc.))
  • 22.
    Andersson, Jan O
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Double peaks reveal rare diplomonad sex2012In: Trends in Parasitology, ISSN 1471-4922, E-ISSN 1471-5007, Vol. 28, no 2, 46-52 p.Article in journal (Refereed)
    Abstract [en]

    Diplomonads, single-celled eukaryotes, are unusual in having two nuclei. Each nucleus contains two copies of the genome and is transcriptionally active. It has long been assumed that diplomonads in general and Giardia intestinalis in particular are asexual. Genomic and population genetic data now challenge that assumption and extensive allelic sequence heterogeneity has been reported in some but not all examined diplomonad lineages. Here it is argued, in contrast to common assumptions, that allelic differences indicate recent sexual events, and isolates that have divided asexually for many generations have lost their allelic variation owing to within-cell recombination. Consequently, directed studies of the allelic sequence heterogeneity in diverse diplomonad lineages are likely to reveal details about the enigmatic diplomonad sexual life cycle.

  • 23.
    Andersson, Jan O
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
    Gene Transfer and the Chimeric Nature of Eukaryotic Genomes2013In: Lateral Gene Transfer in Evolution / [ed] Uri Gophna, New York: Springer Science+Business Media B.V., 2013, 181-197 p.Chapter in book (Other academic)
  • 24.
    Andersson, Jan O
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Phylogenomic approaches underestimate eukaryotic gene transfer2012In: Mobile Genetic Elements, Vol. 2, no 1, 59-62 p.Article in journal (Refereed)
    Abstract [en]

    Phylogenomic approaches have shown that eukaryotes acquire genes via gene transfer. However, there are two fundamental problems for most of these analyses; only transfers from prokaryotes are analyzed and the screening procedures applied assume that gene transfer is rare for eukaryotes. Directed studies of the impact of gene transfer on diverse eukaryotic lineages produce a much more complex picture. Many gene families are affected by multiple transfer events from prokaryotes to eukaryotes, and transfers between eukaryotic lineages are routinely detected. This suggests that the assumptions applied in traditional phylogenomic approaches are too naïve and result in many false negatives. This issue was recently addressed by identifying and analyzing the evolutionary history of 49 patchily distributed proteins shared between Dictyostelium and bacteria. The vast majority of these gene families showed strong indications of gene transfers, both between and within the three domains of life. However, only one of these was previously reported as a gene transfer candidate using a traditional phylogenomic approach. This clearly illustrates that more realistic assumptions are urgently needed in genome-wide studies of eukaryotic gene transfer.

  • 25.
    Andersson, Jan O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
    Andersson, Siv GE
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
    Genome degradation is an ongoing process in Rickettsia1999In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, ISSN 0737-403, Vol. 16, no 9, 1178-1191 p.Article in journal (Other academic)
    Abstract [en]

    To study reductive evolutionary processes in bacterial genomes, we examine sequences in the Rickettsia genomes which are unconstrained by selection and evolve as pseudogenes, one of which is the metK gene, which codes for AdoMet synthetase. Here, we sequenced the metK gene and three surrounding genes in eight different species of the genus Rickettsia. The metK gene was found to contain a high incidence of deletions in six lineages, while the three genes in its surroundings were functionally conserved in all eight lineages. A more drastic example of gene degradation was identified in the metK downstream region, which contained an open reading frame in Rickettsia felis. Remnants of this open reading frame could be reconstructed in five additional species by eliminating sites of frameshift mutations and termination codons. A detailed examination of the two reconstructed genes revealed that deletions strongly predominate over insertions and that there is a strong transition bias for point mutations which is coupled to an excess of GC-to-AT substitutions. Since the molecular evolution of these inactive genes should reflect the rates and patterns of neutral mutations, our results strongly suggest that there is a high spontaneous rate of deletions as well as a strong mutation bias toward AT pairs in the Rickettsia genomes. This may explain the low genomic G + C content (29%), the small genome size (1.1 Mb), and the high noncoding content (24%), as well as the presence of several pseudogenes in the Rickettsia prowazekii genome.

  • 26.
    Andersson, Jan O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Andersson, Siv GE
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Genomic rearrangements during evolution of the obligate intracellular parasite Rickettsia prowazekii as inferred from an analysis of 52015 bp nucleotide sequence1997In: Microbiology, ISSN 1350-0872, E-ISSN 1465-2080, Vol. 143, no 8, 2783-2795 p.Article in journal (Other academic)
    Abstract [en]

    In this study a description is given of the sequence and analysis of 52 kb from the 1.1 Mb genome of Rickettsia prowazekii, a member of the alpha-Proteobacteria. An investigation was made of nucleotide frequencies and amino acid composition patterns of 41 coding sequences, distributed in 10 genomic contigs, of which 32 were found to have putative homologues in the public databases. Overall, the coding content of the individual contigs ranged from 59 to 97%, with a mean of 81%. The genes putatively identified included genes involved in the biosynthesis of nucleotides, macromolecules and cell wall structures as well as citric acid cycle component genes. In addition, a putative identification was made of a member of the regulatory response family of two-component signal transduction systems as well as a gene encoding haemolysin. For one gene, the homologue of metK, an internal stop codon was discovered within a region that is otherwise highly conserved. Comparisons with the genomic structures of Escherichia coli, Haemophilus influenzae and Bacillus subtilis have revealed several atypical gene organization patterns in the R. prowazekii genome. For example, R. prowazekii was found to have a unique arrangement of genes upstream of dnaA in a region that is highly conserved among other microbial genomes and thought to represent the origin of replication of a primordial replicon. The results presented in this paper support the hypothesis that the R. prowazekii genome is a highly derived genome and provide examples of gene order structures that are unique for the Rickettsia.

  • 27.
    Andersson, Jan O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
    Andersson, Siv GE
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
    Insights into the evolutionary process of genome degradation1999In: Current Opinion in Genetics and Development, ISSN 0959-437X, E-ISSN 1879-0380, Vol. 9, no 6, 664-671 p.Article in journal (Refereed)
    Abstract [en]

    Studies of noncoding and pseudogene sequence diversity, particularly in Rickettsia, have begun to reveal the basic principles of genome degradation in microorganisms. Increasingly, studies of genes and genomes suggest that there has been an extensive amount of horizontal gene transfer among microorganisms. As this inflow of genetic material does not seem generally to have resulted in genome size expansions, however, degenerative processes must be at the very least as widespread as horizontal gene transfer. The basic principles of gene degradation and elimination that are being explored in Rickettsia are likely to be of major importance for our understanding of how microbial genomes evolve.

  • 28.
    Andersson, Jan O
    et al.
    Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
    Doolittle, W Ford
    Nesbø, Camilla L
    Genomics. Are there bugs in our genome?2001In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 292, no 5523, 1848-1850 p.Article in journal (Refereed)
  • 29.
    Andersson, Jan O.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Hirt, Robert P.
    Foster, Peter G.
    Roger, Andrew J.
    Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes2006In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 6, 27Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Lateral gene transfer (LGT) in eukaryotes from non-organellar sources is a controversial subject in need of further study. Here we present gene distribution and phylogenetic analyses of the genes encoding the hybrid-cluster protein, A-type flavoprotein, glucosamine-6-phosphate isomerase, and alcohol dehydrogenase E. These four genes have a limited distribution among sequenced prokaryotic and eukaryotic genomes and were previously implicated in gene transfer events affecting eukaryotes. If our previous contention that these genes were introduced by LGT independently into the diplomonad and Entamoeba lineages were true, we expect that the number of putative transfers and the phylogenetic signal supporting LGT should be stable or increase, rather than decrease, when novel eukaryotic and prokaryotic homologs are added to the analyses. RESULTS: The addition of homologs from phagotrophic protists, including several Entamoeba species, the pelobiont Mastigamoeba balamuthi, and the parabasalid Trichomonas vaginalis, and a large quantity of sequences from genome projects resulted in an apparent increase in the number of putative transfer events affecting all three domains of life. Some of the eukaryotic transfers affect a wide range of protists, such as three divergent lineages of Amoebozoa, represented by Entamoeba, Mastigamoeba, and Dictyostelium, while other transfers only affect a limited diversity, for example only the Entamoeba lineage. These observations are consistent with a model where these genes have been introduced into protist genomes independently from various sources over a long evolutionary time. CONCLUSION: Phylogenetic analyses of the updated datasets using more sophisticated phylogenetic methods, in combination with the gene distribution analyses, strengthened, rather than weakened, the support for LGT as an important mechanism affecting the evolution of these gene families. Thus, gene transfer seems to be an on-going evolutionary mechanism by which genes are spread between unrelated lineages of all three domains of life, further indicating the importance of LGT from non-organellar sources into eukaryotic genomes.

  • 30.
    Andersson, Jan O
    et al.
    The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
    Roger, Andrew J
    A cyanobacterial gene in nonphotosynthetic protists: an early chloroplast acquisition in eukaryotes?2002In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 12, no 2, 115-119 p.Article in journal (Refereed)
    Abstract [en]

    Since the incorporation of mitochondria and chloroplasts (plastids) into the eukaryotic cell by endosymbiosis, genes have been transferred from the organellar genomes to the nucleus of the host, via an ongoing process known as endosymbiotic gene transfer. Accordingly, in photosynthetic eukaryotes, nuclear genes with cyanobacterial affinity are believed to have originated from endosymbiotic gene transfer from chloroplasts. Analysis of the Arabidopsis thaliana genome has shown that a significant fraction (2%-9%) of the nuclear genes have such an endosymbiotic origin. Recently, it was argued that 6-phosphogluconate dehydrogenase (gnd)-the second enzyme in the oxidative pentose phosphate pathway-was one such example. Here we show that gnd genes with cyanobacterial affinity also are present in several nonphotosynthetic protistan lineages, such as Heterolobosea, Apicomplexa, and parasitic Heterokonta. Current data cannot definitively resolve whether these groups acquired the gnd gene by primary and/or secondary endosymbiosis or via an independent lateral gene transfer event. Nevertheless, our data suggest that chloroplasts were introduced into eukaryotes much earlier than previously thought and that several major groups of heterotrophic eukaryotes have secondarily lost photosynthetic plastids.

  • 31.
    Andersson, Jan O
    et al.
    The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada..
    Roger, Andrew J
    Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers2002In: Eukaryotic Cell, ISSN 1535-9778, E-ISSN 1535-9786, Vol. 1, no 2, 304-310 p.Article in journal (Refereed)
    Abstract [en]

    Lateral gene transfer has been identified as an important mode of genome evolution within prokaryotes. Except for the special case of gene transfer from organelle genomes to the eukaryotic nucleus, only a few cases of lateral gene transfer involving eukaryotes have been described. Here we present phylogenetic and gene order analyses on the small subunit of glutamate synthase (encoded by gltD) and its homologues, including the large subunit of sulfide dehydrogenase (encoded by sudA). The scattered distribution of the sudA and sudB gene pair and the phylogenetic analysis strongly suggest that lateral gene transfer was involved in the propagation of the genes in the three domains of life. One of these transfers most likely occurred between a prokaryote and an ancestor of diplomonad protists. Furthermore, phylogenetic analyses indicate that the gene for the small subunit of glutamate synthase was transferred from a low-GC gram-positive bacterium to a common ancestor of animals, fungi, and plants. Interestingly, in both examples, the eukaryotes encode a single gene that corresponds to a conserved operon structure in prokaryotes. Our analyses, together with several recent publications, show that lateral gene transfers from prokaryotes to unicellular eukaryotes occur with appreciable frequency. In the case of the genes for sulfide dehydrogenase, the transfer affected only a limited group of eukaryotes--the diplomonads--while the transfer of the glutamate synthase gene probably happened earlier in evolution and affected a wider range of eukaryotes.

  • 32.
    Andersson, Jan O
    et al.
    The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
    Sjögren, Åsa M
    Davis, Lesley A M
    Embley, T Martin
    Roger, Andrew J
    Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes2003In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 13, no 2, 94-104 p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Lateral gene transfer (LGT) is an important evolutionary mechanism among prokaryotes. The situation in eukaryotes is less clear; the human genome sequence failed to give strong support for any recent transfers from prokaryotes to vertebrates, yet a number of LGTs from prokaryotes to protists (unicellular eukaryotes) have been documented. Here, we perform a systematic analysis to investigate the impact of LGT on the evolution of diplomonads, a group of anaerobic protists.

    RESULTS: Phylogenetic analyses of 15 genes present in the genome of the Atlantic Salmon parasite Spironucleus barkhanus and/or the intestinal parasite Giardia lamblia show that most of these genes originated via LGT. Half of the genes are putatively involved in processes related to an anaerobic lifestyle, and this finding suggests that a common ancestor, which most probably was aerobic, of Spironucleus and Giardia adapted to an anaerobic environment in part by acquiring genes via LGT from prokaryotes. The sources of the transferred diplomonad genes are found among all three domains of life, including other eukaryotes. Many of the phylogenetic reconstructions show eukaryotes emerging in several distinct regions of the tree, strongly suggesting that LGT not only involved diplomonads, but also involved other eukaryotic groups.

    CONCLUSIONS: Our study shows that LGT is a significant evolutionary mechanism among diplomonads in particular and protists in general. These findings provide insights into the evolution of biochemical pathways in early eukaryote evolution and have important implications for studies of eukaryotic genome evolution and organismal relationships. Furthermore, "fusion" hypotheses for the origin of eukaryotes need to be rigorously reexamined in the light of these results.

  • 33.
    Andersson, Siv G. E.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
    Stress management strategies in single bacterial cells2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 15, 3921-3923 p.Article in journal (Other academic)
  • 34. Andersson, Siv G E
    et al.
    Alsmark, Cecilia
    Canbäck, Björn
    Davids, Wagied
    Frank, Carolin
    Karlberg, Olof
    Klasson, Lisa
    Antoine-Legault, Boris
    Mira, Alex
    Tamas, Ivica
    Comparative genomics of microbial pathogens and symbionts.2002In: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 18 Suppl 2, S17- p.Article in journal (Refereed)
    Abstract [en]

    We are interested in quantifying the contribution of gene acquisition, loss, expansion and rearrangements to the evolution of microbial genomes. Here, we discuss factors influencing microbial genome divergence based on pair-wise genome comparisons of closely related strains and species with different lifestyles. A particular focus is on intracellular pathogens and symbionts of the genera Rickettsia, Bartonella and BUCHNERA: Extensive gene loss and restricted access to phage and plasmid pools may provide an explanation for why single host pathogens are normally less successful than multihost pathogens. We note that species-specific genes tend to be shorter than orthologous genes, suggesting that a fraction of these may represent fossil-orfs, as also supported by multiple sequence alignments among species. The results of our genome comparisons are placed in the context of phylogenomic analyses of alpha and gamma proteobacteria. We highlight artefacts caused by different rates and patterns of mutations, suggesting that atypical phylogenetic placements can not a priori be taken as evidence for horizontal gene transfer events. The flexibility in genome structure among free-living microbes contrasts with the extreme stability observed for the small genomes of aphid endosymbionts, in which no rearrangements or inflow of genetic material have occurred during the past 50 millions years (1). Taken together, the results suggest that genomic stability correlate with the content of repeated sequences and mobile genetic elements, and thereby indirectly with bacterial lifestyles.

  • 35.
    Andersson, Siv GE
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Zomorodipour, A
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Andersson, Jan O
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Sicheritz-Ponten, T
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Alsmark, UCM
    Uppsala University.
    Podowski, RM
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Näslund, A Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Eriksson, Ann-Sofie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Winkler, HH
    Kurland, Charles G
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    The genome sequence of Rickettsia prowazekii and the origin of mitochondria1998In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 396, no 6707, 133-140 p.Article in journal (Refereed)
    Abstract [en]

    We describe here the complete genome sequence (1,111,523 base pairs) of the obligate intracellular parasite Rickettsia prowazekii, the causative agent of epidemic typhus. This genome contains 834 protein-coding genes. The functional profiles of these genes show similarities to those of mitochondrial genes: no genes required for anaerobic glycolysis are found in either R. prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in R. prowazekii. In effect, ATP production in Rickettsia is the same as that in mitochondria. Many genes involved in the biosynthesis and regulation of biosynthesis of amino acids and nucleosides in free-living bacteria are absent from R. prowazekii and mitochondria. Such genes seem to have been replaced by homologues in the nuclear (host) genome. The R. prowazekii genome contains the highest proportion of non-coding DNA (24%) detected so far in a microbial genome. Such non-coding sequences may be degraded remnants of 'neutralized' genes that await elimination from the genome. Phylogenetic analyses indicate that R. prowazekii is more closely related to mitochondria than is any other microbe studied so far.

  • 36.
    Andreasen, Katarina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
    Manktelow, Mariette
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
    Sehic, Jasna
    Garkava-Gustavsson, Larisa
    Genetic identity of putative Linnaean plants: Successful DNA amplification of Linnaeus's crab apple Malus baccata2014In: Taxon, ISSN 0040-0262, E-ISSN 1996-8175, Vol. 63, no 2, 408-416 p.Article in journal (Other academic)
    Abstract [en]

    Advancements in molecular techniques enable us to extract DNA from historic herbarium specimens and facilitate genetic comparisons between herbarium material and living plant collections. These recent advances offer an exciting opportunity for identifying extant Linnaean plants by genetic comparisons of Linnaeus's own herbarium specimens with potentially remnant plants from his cultivations. DNA from the lectotype of Malus baccata (L.) Borkh. in the Linnaean Herbarium was successfully extracted and amplified for five of twelve loci of microsatellites. Results of genetic comparisons with M. baccata trees from Linnaeus's Hammarby, Sweden, show that the trees at Hammarby are closely related to each other, but not to the lectotype, which is closer to material from Russia. This suggests that Linnaeus received M. baccata from more than one source. Although not close to the lectotype and not represented by a specimen in the Linnaean Herbarium, the extant M. baccata at Hammarby may still represent Linnaean plants, that were grown by Linnaeus himself, or the descendants to such plants. Future studies on the almost 50 living, potential Linnaean plants may reveal an invaluable biological, scientific and cultural heritage from the era that saw the rise of systematic biology.

  • 37. Antoniazza, Sylvain
    et al.
    Burri, Reto
    Fumagalli, Luca
    Goudet, Jérôme
    Roulin, Alexandre
    Local adaptation maintains clinal variation in melanin-based coloration of European barn owls (Tyto alba).2010In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 64, no 7, 1944-1954 p.Article in journal (Refereed)
    Abstract [en]

    Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.

  • 38. Aplin, Lucy M.
    et al.
    Farine, Damien R.
    Morand-Ferron, Julie
    Cockburn, Andrew
    Thornton, Alex
    Sheldon, Ben C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Experimentally induced innovations lead to persistent culture via conformity in wild birds2015In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 518, no 7540, 538-541 p.Article in journal (Refereed)
    Abstract [en]

    In human societies, cultural norms arise when behaviours are transmitted through social networks via high-fidelity social learning'. However, a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours might spread and persist in animal populations'''. Here we show experimental evidence of the establishment of foraging traditions in a wild bird population. We introduced alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major) and used automated tracking to map the diffusion, establishment and long-term persistence of the seeded innovations. Furthermore, we used social network analysis to examine the social factors that influenced diffusion dynamics. From only two trained birds in each sub-population, the information spread rapidly through social network ties, to reach an average of 75% of individuals, with a total of 414 knowledgeable individuals performing 57,909 solutions over all replicates. The sub-populations were heavily biased towards using the technique that was originally introduced, resulting in established local traditions that were stable over two generations, despite a high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first acquiring an innovation, and continuing to favour social information over personal information. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans''. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.

  • 39.
    Arct, Aneta
    et al.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Sudyka, Joanna
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Podmoka, Edyta
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichon, Mariusz
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Heterozygosity-fitness correlations in blue tit nestlings (Cyanistis caeruleus) under contrasting rearing conditions2017In: Evolutionary Ecology, ISSN 0269-7653, E-ISSN 1573-8477, Vol. 31, no 5, 803-814 p.Article in journal (Refereed)
    Abstract [en]

    Understanding the relation between genetic variation and fitness remains a key question in evolutionary biology. Although heterozygosity has been reported to correlate with many fitness-related traits, the strength of the heterozygosity-fitness correlations (HFCs) is usually weak and it is still difficult to assess the generality of these associations in natural populations. It has been suggested that HFCs may become meaningful only under particular environmental conditions. Moreover, existing evidence suggests that HFCs may also differ between sexes. The aim of this study was to investigate correlations between heterozygosity in neutral markers (microsatellites) and fitness-related traits in a natural population of blue tits (Cyanistes caeruleus). Additionally, we tested whether sex and environmental conditions may influence the magnitude and direction of HFCs. We found a positive relationship between heterozygosity and body mass of 14 days post-hatching nestlings, but only among females. Our results suggest that the correlation between heterozygosity and nestling body mass observed among female offspring could be attributed to within-brood effects. We failed to find any evidence that environmental conditions as simulated by brood size manipulation affect HFCs.

  • 40. Arnegard, Matthew E.
    et al.
    McGee, Matthew D.
    Matthews, Blake
    Marchinko, Kerry B.
    Conte, Gina L.
    Kabir, Sahriar
    Bedford, Nicole
    Bergek, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Chan, Yingguang Frank
    Jones, Felicity C.
    Kingsley, David M.
    Peichel, Catherine L.
    Schluter, Dolph
    Genetics of ecological divergence during speciation2014In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 511, no 7509, 307-311 p.Article in journal (Refereed)
    Abstract [en]

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Although this process is a major generator of biodiversity, its genetic basis is still poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces the growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but depend on the ecological context.

  • 41.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cryptic female choice2014In: The Evolution of Insect Mating Systems / [ed] D. Shuker and L. Simmons, Oxford: Oxford University Press, 2014, 204-220 p.Chapter in book (Other academic)
  • 42.
    Arnqvist, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Sayadi, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Immonen, Elina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Hotzy, Cosima
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Rankin, Daniel
    Univ Zurich, Inst Evolutionary Biol & Environm Studies, Zurich, Switzerland..
    Tuda, Midori
    Kyushu Univ, Dept Bioresource Sci, Lab Insect Nat Enemies, Fukuoka 8128581, Japan.;Kyushu Univ, Inst Biol Control, Fac Agr, Fukuoka 8128581, Japan..
    Hjelmen, Carl E.
    Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA..
    Johnston, J. Spencer
    Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA..
    Genome size correlates with reproductive fitness in seed beetles2015In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 282, no 1815, 20151421Article in journal (Refereed)
    Abstract [en]

    The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the 'C-value paradox'. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4-5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.

  • 43.
    Arnqvist, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Vellnow, Nikolas
    Rowe, Locke
    The effect of epistasis on sexually antagonistic genetic variation2014In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 281, no 1787, 20140489- p.Article in journal (Refereed)
    Abstract [en]

    There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the 'equity effect', may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence.

  • 44.
    Ast, Jennifer C
    University of Michigan, Museum of Zoology and Department of Ecology and Evolutionary Biology.
    Mitochondrial DNA evidence and evolution in Varanoidea (Squamata)2001In: Cladistics, ISSN 0748-3007, E-ISSN 1096-0031, Vol. 17, no 3, 211-226 p.Article in journal (Refereed)
    Abstract [en]

    Varanoidea is a monophyletic group of anguimorph lizards, comprising the New World helodermatids, the Bornean earless monitor Lanthanotus borneensis, and the Old World monitors (Varanus). I use mitochondrial DNA sequences and extensive taxonomic sampling to test alternative hypotheses of varanoid relationships. The most parsimonious hypothesis confirms the monophyly of Varanoidea (Heloderma, Lanthanotus, and Varanus) and Varanus, as well as the sister-taxon relationship of Varanus and Lanthanotus. The relationships among Varanus species differ in several respects from previous hypotheses. Three major lineages are recognized within Varanus: an African clade basal to the rest of the group, an Indo-Asian clade, and an Indo-Australian clade. Within the last lineage, the endemic Australian dwarf monitors (Odatria) form a clade sister to the large Australian monitors (the gouldii group). Tests of the effects of rate heterogeneity and homoplasy demonstrate that putative process partitions of data are largely congruent with one another and contribute positive support to the overall hypothesis.

  • 45. Axelsson, Erik
    Male-biased mutation rate and divergence in autosomal, z-linked and w-linked introns of chicken and Turkey2004In: Mol Biol Evol.Article in journal (Refereed)
  • 46.
    Axelsson, Erik
    et al.
    Department of Biology, Evolutionary Biology, Copenhagen University.
    Albrechtsen, A
    Department of Biostatistics, University of Copenhagen.
    van, A P
    Animal Breeding and Genomics Centre, Wageningen UR.
    Li, Lili
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Megens, H J
    Animal Breeding and Genomics Centre, Wageningen UR.
    Vereijken, A L J
    Hendrix Genetics BV, Boxmeer.
    Crooijmans, R P M A
    Animal Breeding and Genomics Centre, Wageningen UR.
    Groenen, M A M
    Animal Breeding and Genomics Centre, Wageningen UR.
    Ellegren, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Willerslev, E
    Department of Biology, Evolutionary Biology, Copenhagen University.
    Nielsen, R
    Department of Integrative Biology, University of California, Berkeley.
    Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds2010In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 105, no 3, 290-298 p.Article in journal (Refereed)
    Abstract [en]

    As all four meiotic products give rise to sperm in males, female meiosis result in a single egg in most eukaryotes. Any genetic element with the potential to influence chromosome segregation, so that it is preferentially included in the egg, should therefore gain a transmission advantage; a process termed female meiotic drive. We are aware of two chromosomal components, centromeres and telomeres, which share the potential to influence chromosome movement during meioses and make the following predictions based on the presence of female meiotic drive: (1) centromere-binding proteins should experience rapid evolution as a result of a conflict between driving centromeres and the rest of the genome; and (2) segregation patterns should be skewed near centromeres and telomeres. To test these predictions, we first analyze the molecular evolution of seven centromere-binding proteins in nine divergent bird species. We find strong evidence for positive selection in two genes, lending support to the genomic conflict hypothesis. Then, to directly test for the presence of segregation distortion, we also investigate the transmission of ~9000 single-nucleotide polymorphisms in 197 chicken families. By simulating fair Mendelian meioses, we locate chromosomal regions with statistically significant transmission ratio distortion. One region is located near the centromere on chromosome 1 and a second region is located near the telomere on the p-arm of chromosome 1. Although these observations do not provide conclusive evidence in favour of the meiotic drive/genome conflict hypothesis, they do lend support to the hypothesis that centromeres and telomeres drive during female meioses in chicken.

  • 47. Axelsson, Erik
    et al.
    Webster, Matthew
    Base Composition Patterns2011In: Encyclopedia of Life Sciences, ISSN 1561592617 9781561592616Article, book review (Refereed)
  • 48. Axelsson, Erik
    et al.
    Willerslev, Eske
    Gilbert, M Thomas P
    Nielsen, Rasmus
    The effect of ancient DNA damage on inferences of demographic histories.2008In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 25, no 10, 2181-7 p.Article in journal (Refereed)
    Abstract [en]

    The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates of diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after, the sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal for a change in effective population size in this data set vanishes once the effects of putative damage are removed. Our results suggest that population genetic analyses of aDNA sequences, which do not accurately account for damage, should be interpreted with great caution.

  • 49.
    Babiker, Hiba
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Schlebusch, Carina M
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Hassan, Hisham Y
    Jakobsson, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Genetic variation and population structure of Sudanese populations as indicated by 15 Identifiler sequence-tagged repeat (STR) loci.2011In: Investigative Genetics, ISSN 2041-2223, E-ISSN 2041-2223, Vol. 2, no 1Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: There is substantial ethnic, cultural and linguistic diversity among the people living in east Africa, Sudan and the Nile Valley. The region around the Nile Valley has a long history of succession of different groups, coupled with demographic and migration events, potentially leading to genetic structure among humans in the region.

    RESULT: We report the genotypes of the 15 Identifiler microsatellite markers for 498 individuals from 18 Sudanese populations representing different ethnic and linguistic groups. The combined power of exclusion (PE) was 0.9999981, and the combined match probability was 1 in 7.4 × 1017. The genotype data from the Sudanese populations was combined with previously published genotype data from Egypt, Somalia and the Karamoja population from Uganda. The Somali population was found to be genetically distinct from the other northeast African populations. Individuals from northern Sudan clustered together with those from Egypt, and individuals from southern Sudan clustered with those from the Karamoja population. The similarity of the Nubian and Egyptian populations suggest that migration, potentially bidirectional, occurred along the Nile river Valley, which is consistent with the historical evidence for long-term interactions between Egypt and Nubia.

    CONCLUSION: We show that despite the levels of population structure in Sudan, standard forensic summary statistics are robust tools for personal identification and parentage analysis in Sudan. Although some patterns of population structure can be revealed with 15 microsatellites, a much larger set of genetic markers is needed to detect fine-scale population structure in east Africa and the Nile Valley.

  • 50.
    Backström, Niclas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Adaptive evolution in passerine birds2014In: Encyclopedia of Life Sciences, ISSN 1476-9506, E-ISSN 1476-9506Article in journal (Other academic)
    Abstract [en]

    Adaptive evolution is the process whereby mutations that provide the carrier with a selective advantage increase in frequency in a population via the process of natural selection. Passerines are widespread, common and long-term targets for field study and they demonstrate a copious diversity in physiological and morphological adaptations to varying habitats, for example, beak size and wing shape, and they are, therefore, an important study system to understand adaptive evolution. Recent technological advancements have made it easier to investigate the mechanistic and evolutionary underpinnings of adaptive evolution by allowing genome sequence data to be generated in almost any species of interest. However, it is important to assess the contribution of neutral forces like demographic events and GC-biased gene conversion before concluding that selection has shaped the patterns observed in genomic data. Initial analyses in passerines have identified candidate genes that might be involved in, for example, song learning, beak morphology, disease resistance, high-altitude adaptation and exploratory behavior, but functional verifications are needed to establish a causative relationship between the identified genes and the traits. Key Concepts:Key Concepts: * Passerines are widespread, generally common and easy targets for field study and they demonstrate a copious diversity in physiological and morphological adaptations to varying habitats and they have, therefore, played an important role in previous studies concerning behaviour, ecology and evolution. * A full understanding of passerine adaptations requires an integrative approach aiming at identifying and characterising both proximate (mechanistic) and ultimate (evolutionary) underpinnings to adaptive traits. * The recent advancements in molecular techniques allows for using both comparative genomics, expression profiling, candidate gene approaches and classical association and QTL mapping strategies to identify the genetic basis of adaptive traits in passerines. * Groundwork studies of ecological genetics and genomics using comparative approaches, expression profiling and candidate genes are now accumulating and in a handful of cases we have an idea about the genetic basis of adaptive traits related to, for example, dietary specialisation, learning, exploratory behaviour, immune response and high-altitude adaptations in passerines. * Demographic history and other neutral processes, for example, GC-biased gene conversion (gcBGC), may mimic signals of selection and it is important to verify findings of adaptive evolution using independent methods.

1234567 1 - 50 of 829
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf