uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 2915
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aarts, Fides
    et al.
    Jonsson, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Uijen, Johan
    Vaandrager, Frits
    Generating models of infinite-state communication protocols using regular inference with abstraction2015In: Formal methods in system design, ISSN 0925-9856, E-ISSN 1572-8102, Vol. 46, no 1, p. 1-41Article in journal (Refereed)
    Abstract [en]

    In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with an implementation of session initiation protocol (SIP) in ns-2 and an implementation of transmission control protocol (TCP) in Windows 8, and generated models of SIP and TCP components.

  • 2.
    Abd-Elrady, Emad
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Harmonic signal modeling based on the Wiener model structure2002Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The estimation of frequencies and corresponding harmonic overtones is a problem of great importance in many situations. Applications can, for example, be found in supervision of electrical power transmission lines, in seismology and in acoustics. Generally, a periodic function with an unknown fundamental frequency in cascade with a parameterized and unknown nonlinear function can be used as a signal model for an arbitrary periodic signal. The main objective of the proposed modeling technique is to estimate the fundamental frequency of the periodic function in addition to the parameters of the nonlinear function.

    The thesis is divided into four parts. In the first part, a general introduction to the harmonic signal modeling problem and different approaches to solve the problem are given. Also, an outline of the thesis and future research topics are introduced.

    In the second part, a previously suggested recursive prediction error method (RPEM) for harmonic signal modeling is studied by numerical examples to explore the ability of the algorithm to converge to the true parameter vector. Also, the algorithm is modified to increase its ability to track the fundamental frequency variations.

    A modified algorithm is introduced in the third part to give the algorithm of the second part a more stable performance. The modifications in the RPEM are obtained by introducing an interval in the nonlinear block with fixed static gain. The modifications that result in the convergence analysis are, however, substantial and allows a complete treatment of the local convergence properties of the algorithm. Moreover, the Cramér–Rao bound (CRB) is derived for the modified algorithm and numerical simulations indicate that the method gives good results especially for moderate signal to noise ratios (SNR).

    In the fourth part, the idea is to give the algorithm of the third part the ability to estimate the driving frequency and the parameters of the nonlinear output function parameterized also in a number of adaptively estimated grid points. Allowing the algorithm to automatically adapt the grid points as well as the parameters of the nonlinear block, reduces the modeling errors and gives the algorithm more freedom to choose the suitable grid points. Numerical simulations indicate that the algorithm converges to the true parameter vector and gives better performance than the fixed grid point technique. Also, the CRB is derived for the adaptive grid point technique.

  • 3.
    Abd-Elrady, Emad
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Nonlinear Approaches to Periodic Signal Modeling2005Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Periodic signal modeling plays an important role in different fields. The unifying theme of this thesis is using nonlinear techniques to model periodic signals. The suggested techniques utilize the user pre-knowledge about the signal waveform. This gives these techniques an advantage as compared to others that do not consider such priors.

    The technique of Part I relies on the fact that a sine wave that is passed through a static nonlinear function produces a harmonic spectrum of overtones. Consequently, the estimated signal model can be parameterized as a known periodic function (with unknown frequency) in cascade with an unknown static nonlinearity. The unknown frequency and the parameters of the static nonlinearity are estimated simultaneously using the recursive prediction error method (RPEM). A treatment of the local convergence properties of the RPEM is provided. Also, an adaptive grid point algorithm is introduced to estimate the unknown frequency and the parameters of the static nonlinearity in a number of adaptively estimated grid points. This gives the RPEM more freedom to select the grid points and hence reduces modeling errors.

    Limit cycle oscillations problem are encountered in many applications. Therefore, mathematical modeling of limit cycles becomes an essential topic that helps to better understand and/or to avoid limit cycle oscillations in different fields. In Part II, a second-order nonlinear ODE is used to model the periodic signal as a limit cycle oscillation. The right hand side of the ODE model is parameterized using a polynomial function in the states, and then discretized to allow for the implementation of different identification algorithms. Hence, it is possible to obtain highly accurate models by only estimating a few parameters.

    In Part III, different user aspects for the two nonlinear approaches of the thesis are discussed. Finally, topics for future research are presented.

  • 4.
    Abd-Elrady, Emad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Söderström, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Periodic signal analysis using orbits of nonlinear ODEs based on the Markov estimate2004Conference paper (Refereed)
  • 5.
    Abd-Elrady, Emad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Söderström, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Periodic signal modeling based on Liénard's equation2003Report (Other academic)
  • 6.
    Abd-Elrady, Emad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Söderström, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Periodic signal modeling based on Liénard's equation2004In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 49, no 10, p. 1773-1778Article in journal (Refereed)
  • 7.
    Abdulla, Parosh
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Aronis, Stavros
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Jonsson, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Sagonas, Konstantinos
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Optimal dynamic partial order reduction2014In: Proc. 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New York: ACM Press, 2014, p. 373-384Conference paper (Refereed)
    Abstract [en]

    Stateless model checking is a powerful technique for program verification, which however suffers from an exponential growth in the number of explored executions. A successful technique for reducing this number, while still maintaining complete coverage, is Dynamic Partial Order Reduction (DPOR). We present a new DPOR algorithm, which is the first to be provably optimal in that it always explores the minimal number of executions. It is based on a novel class of sets, called source sets, which replace the role of persistent sets in previous algorithms. First, we show how to modify an existing DPOR algorithm to work with source sets, resulting in an efficient and simple to implement algorithm. Second, we extend this algorithm with a novel mechanism, called wakeup trees, that allows to achieve optimality. We have implemented both algorithms in a stateless model checking tool for Erlang programs. Experiments show that source sets significantly increase the performance and that wakeup trees incur only a small overhead in both time and space.

  • 8.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Bouajjani, Ahmed
    IRIF Université Paris Diderot, Paris, France.
    Ngo, Tuan Phong
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Context-bounded analysis for POWER2017In: Tools and Algorithms for the Construction and Analysis of Systems: Part II, Springer, 2017, p. 56-74Conference paper (Refereed)
    Abstract [en]

    We propose an under-approximate reachability analysis algorithm for programs running under the POWER memory model, in the spirit of the work on context-bounded analysis initiated by Qadeer et al. in 2005 for detecting bugs in concurrent programs (supposed to be running under the classical SC model). To that end, we first introduce a new notion of context-bounding that is suitable for reasoning about computations under POWER, which generalizes the one defined by Atig et al. in 2011 for the TSO memory model. Then, we provide a polynomial size reduction of the context-bounded state reachability problem under POWER to the same problem under SC: Given an input concurrent program P, our method produces a concurrent program P' such that, for a fixed number of context switches, running P' under SC yields the same set of reachable states as running P under POWER. The generated program P' contains the same number of processes as P and operates on the same data domain. By leveraging the standard model checker CBMC, we have implemented a prototype tool and applied it on a set of benchmarks, showing the feasibility of our approach.

  • 9.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Bouajjani, Ahmed
    Ngo, Tuan Phong
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Replacing store buffers by load buffers in TSO2018In: Verification and Evaluation of Computer and Communication Systems, Springer, 2018, p. 22-28Conference paper (Refereed)
  • 10.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Bui, Phi Diep
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Counter-Example Guided Program Verification2016In: FM 2016: Formal Methods, Springer, 2016, p. 25-42Conference paper (Refereed)
  • 11.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Chen, Yu-Fang
    Institute of Information Science, Academia Sinica .
    Holik, Lukas
    Brno University.
    Rezine, Ahmed
    Linköping University.
    Rümmer, Philipp
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    String Constraints for Verification2014In: Computer Aided Verification - 26th International Conference, {CAV} 2014, Held as Part of the Vienna Summer of Logic, {VSL} 2014, Vienna, Austria, July 18-22, 2014. Proceedings, Springer, 2014, p. 150-166Conference paper (Refereed)
    Abstract [en]

    We present a decision procedure for a logic that combines (i) word equations over string variables denoting words of arbitrary lengths, together with (ii) constraints on the length of words, and on (iii) the regular languages to which words belong. Decidability of this general logic is still open. Our procedure is sound for the general logic, and a decision procedure for a particularly rich fragment that restricts the form in which word equations are written. In contrast to many existing procedures, our method does not make assumptions about the maximum length of words. We have developed a prototypical implementation of our decision procedure, and integrated it into a CEGAR-based model checker for the analysis of programs encoded as Horn clauses. Our tool is able to automatically establish the correctness of several programs that are beyond the reach of existing methods.

  • 12.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Hofman, Piotr
    Mayr, Richard
    Kumar, K. Narayan
    Chennai Mathematical Institute, Chennai, India.
    Totzke, Patrick
    Infinite-state energy games2014In: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, Vienna, Austria, July 14 - 18, 2014, New York: ACM Press, 2014Conference paper (Refereed)
    Abstract [en]

    Energy games are a well-studied class of 2-player turn-based games on a finite graph where transitions are labeled with integer vectors which represent changes in a multidimensional resource (the energy). One player tries to keep the cumulative changes non-negative in every component while the other tries to frustrate this.

    We consider generalized energy games played on infinite game graphs induced by pushdown automata (modelling recursion) or their subclass of one-counter automata.

    Our main result is that energy games are decidable in the case where the game graph is induced by a one-counter automaton and the energy is one-dimensional. On the other hand, every further generalization is undecidable: Energy games on one-counter automata with a 2-dimensional energy are undecidable, and energy games on pushdown automata are undecidable even if the energy is one-dimensional. Furthermore, we show that energy games and simulation games are inter-reducible, and thus we additionally obtain several new (un)decidability results for the problem of checking simulation preorder between pushdown automata and vector addition systems.

  • 13.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Rezine, Othmane
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Verification of Directed Acyclic Ad Hoc Networks2013In: Formal Techniques for Distributed Systems: FORTE 2013, Springer Berlin/Heidelberg, 2013, p. 193-208Conference paper (Refereed)
  • 14.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Stenman, Jari
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Computing optimal reachability costs in priced dense-timed pushdown automata2014In: Language and Automata Theory and Applications: LATA 2014, Springer Berlin/Heidelberg, 2014, p. 62-75Conference paper (Refereed)
  • 15.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Stenman, Jari
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Zenoness for Timed Pushdown Automata2014In: Proceedings 15th International Workshop on Verification of Infinite-State Systems, {INFINITY} 2013, Hanoi, Vietnam, 14th October 2013., 2014, p. -47Conference paper (Refereed)
    Abstract [en]

    Timed pushdown automata are pushdown automata extended with a finite set of real-valued clocks. Additionaly, each symbol in the stack is equipped with a value representing its age. The enabledness of a transition may depend on the values of the clocks and the age of the topmost symbol. Therefore, dense-timed pushdown automata subsume both pushdown automata and timed automata. We have previously shown that the reachability problem for this model is decidable. In this paper, we study the zenoness problem and show that it is EXPTIME-complete.

  • 16.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Clemente, Lorenzo
    Mayr, Richard
    Sandberg, Sven
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Stochastic Parity Games on Lossy Channel Systems2014In: Logical Methods in Computer Science, ISSN 1860-5974, E-ISSN 1860-5974, Vol. 10, no 4, article id 21Article in journal (Refereed)
    Abstract [en]

    We give an algorithm for solving stochastic parity games with almost-sure winning conditions on lossy channel systems, under the constraint that both players are restricted to finitememory strategies. First, we describe a general framework, where we consider the class of 21/2-player games with almost-sure parity winning conditions on possibly infinite game graphs, assuming that the game contains a finite attractor. An attractor is a set of states (not necessarily absorbing) that is almost surely re-visited regardless of the players' decisions. We present a scheme that characterizes the set of winning states for each player. Then, we instantiate this scheme to obtain an algorithm for stochastic game lossy channel systems.

  • 17.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Dwarkadas, Sandhya
    University of Rochester, U.S.A..
    Rezine, Ahmed
    Linköping University.
    Shriraman, Arrvindh
    Simon Fraser University, Canada .
    Yunyun, Zhu
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Verifying safety and liveness for the FlexTM hybrid transactional memory2013Conference paper (Refereed)
    Abstract [en]

    We consider the verification of safety (strict serializability and abort consistency) and liveness obstruction and livelock freedom) for the hybrid transactional memory framework FlexTM. This framework allows for flexible implementations of transactional memories based on an adaptation of the MESI coherence protocol. FlexTM allows for both eager and lazy conflict resolution strategies. Like in the case of Software Transactional Memories, the verification problem is not trivial as the number of concurrent transactions, their size, and the number of accessed shared variables cannot be a priori bounded. This complexity is exacerbated by aspects that are specific to hardware and hybrid transactional memories. Our work takes into account intricate behaviours such as cache line based conflict detection, false sharing, invisible reads or non-transactional instructions. We carry out the first automatic verification of a hybrid transactional memory and establish, by adopting a small model approach, challenging properties such as strict serializability, abort consistency, and obstruction freedom for both an eager and a lazy conflict resolution strategies. We also detect an example that refutes livelock freedom. To achieve this, our prototype tool makes use of the latest antichain based techniques to handle systems with tens of thousands of states.

  • 18.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Haziza, Frédéric
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Holík, Lukás
    Block me if you can!: Context-sensitive parameterized verification2014In: Static Analysis: SAS 2014, Springer, 2014, p. 1-17Conference paper (Refereed)
    Abstract [en]

    We present a method for automatic verification of systems with a parameterized number of communicating processes, such as mutual exclusion protocols or agreement protocols. To that end, we present a powerful abstraction framework that uses an efficient and precise symbolic encoding of (infinite) sets of configurations. In particular, it generalizes downward-closed sets that have successfully been used in earlier approaches to parameterized verification. We show experimentally the efficiency of the method, on various examples, including a fine-grained model of Szymanski’s mutual exclusion protocol, whose correctness, to the best of our knowledge, has not been proven automatically by any other existing methods.

  • 19.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Haziza, Frédéric
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Holík, Lukás
    Brno Univ Technol, Brno, Czech Republic.
    Parameterized verification through view abstraction2016In: International Journal on Software Tools for Technology Transfer (STTT), ISSN 1433-2779, E-ISSN 1433-2787, Vol. 18, no 5, p. 495-516Article in journal (Refereed)
    Abstract [en]

    We present a simple and efficient framework for automatic verification of systems with a parametric number of communicating processes. The processes may be organized in various topologies such as words, multisets, rings, or trees. Our method needs to inspect only a small number of processes in order to show correctness of the whole system. It relies on an abstraction function that views the system from the perspective of a fixed number of processes. The abstraction is used during the verification procedure in order to dynamically detect cut-off points beyond which the search of the state space need not continue. We show that the method is complete for a large class of well quasi-ordered systems including Petri nets. Our experimentation on a variety of benchmarks demonstrate that the method is highly efficient and that it works well even for classes of systems with undecidable verification problems. In particular, the method handles the fine-grained and full version of Szymanski's mutual exclusion protocol, whose correctness, to the best of our knowledge, has not been proven automatically by any other existing methods.

  • 20.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Haziza, Frédéric
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Holík, Lukáš
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    All for the price of few: (Parameterized verification through view abstraction)2013In: Verification, Model Checking, and Abstract Interpretation, Springer Berlin/Heidelberg, 2013, p. 476-495Conference paper (Refereed)
  • 21.
    Abdulla, Parosh
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Jonsson, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Trinh, Cong Quy
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Automated Verification of Linearization Policies2016In: Automated Verification of Linearization Policies: 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings, 2016Conference paper (Other academic)
    Abstract [en]

    We present a novel framework for automated verification of linearizability for concurrent data structures that implement sets, stacks, and queues. The framework requires the user to provide a linearization policy, which describes how linearization point placement in different concurrent threads affect each other; such linearization policies are often provided informally together with descriptions of new algorithms. We present a specification formalism for linearization policies which allows the user to specify, in a simple and concise manner, complex patterns including non-fixed linearization points. To automate verification, we extend thread-modular reasoning to bound the number of considered threads, and use a novel symbolic representation for unbounded heap structures that store data from an unbounded domain. We have implemented our framework in a tool and successfully used it to prove linearizability for a wide range of algorithms, including all implementations of concurrent sets, stacks, and queues based on singly-linked lists that are known to us from the literature.

  • 22.
    Abdullah, Jakaria
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Dai, Gaoyang
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Mohaqeqi, Morteza
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Yi, Wang
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Schedulability Analysis and Software Synthesis for Graph-Based Task Models with Resource Sharing2018In: Proc. 24th Real-Time and Embedded Technology and Applications Symposium, IEEE Computer Society, 2018, p. 261-270Conference paper (Refereed)
  • 23. Abermann, S.
    et al.
    Efavi, J.
    Sjöblom, Gustaf
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Lemme, Max
    Olsson, Jörgen
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Bertagnolli, E.
    Processing and evaluation of metal gate/high-k/Si capacitors incorporating Al, Ni, TiN, and Mo as metal gate, and ZrO2 and HfO2 as high-k dielectric2006In: Presented at Int. Conf. on Micro- and Nano-Engineering, 2006Conference paper (Other academic)
  • 24.
    Abrahamsson, Curt Johan David
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Pérez-Loya, Jesús José
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Fregelius, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Evestedt, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Bladh, Johan
    Lundin, Urban
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Magnetic thrust bearing for a 10 MW hydropower generator with a Kaplan turbine2018Conference paper (Refereed)
  • 25.
    Abrahamsson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Kinetic Energy Storage and Magnetic Bearings: for Vehicular Applications2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    One of the main challenges in order to make electric cars competitive with gas-powered cars is in the improvement of the electric power system. Although many of the energy sources currently used in electric vehicles have sufficientlyhigh specific energy, their applicability is limited due to low specific power. It would therefore be advantageous to create a driveline with the main energy storage separated from a smaller energy buffer, designed to have high power capabilities and to withstand frequent and deep discharge cycles. It has been found that rotating kinetic energy storage in flywheels is very well suited for this type of application.

    A composite shell, comprising an inner part made of glassfiber and an outer part made of carbonfiber, was analyzed analytically and numerically, designed, and constructed. The shell was fitted onto a metallic rotor using shrinkfitting. The cost of the shell, and the complexity of assembly, was reduced by winding the glass- and carbonfiber consecutively on a mandrel, and curing the complete assembly simultaneously. Thereby, the shell obtained an internal segmentation, without the need for fitting several concentric parts onto each other. The radial stress inside the composite shell was kept compressive thanks to a novel approach of using the permanent magnets of the integrated electric machine to provide radial mechanical load during rotation.

    Two thrust bearing units (one upper and one lower) comprising one segmented unit with the permanent magnets in a cylindrical Halbach configuration and one non-segmented unit in a up/down configuration were optimized, constructed and tested. Each thrust bearing unit generated 1040 N of repelling force, and a positive axial stiffness of 169 N/mm at the nominal airgap of 5 mm. 

    Two radial active magnetic bearings (one upper and one lower) were optimized, constructed and tested. By parameterizing the shape of the actuators, a numerical optimization of force over resistive loss from the bias currentcould be performed. The optimized shape of the electromagnets was produced by watercutting sheets of laminated steel. A maximum current stiffness of120 N/A at a bias current of 1.5 A was achieved.

    List of papers
    1. Prototype of electric driveline with magnetically levitated double wound motor
    Open this publication in new window or tab >>Prototype of electric driveline with magnetically levitated double wound motor
    Show others...
    2010 (English)In: Electrical Machines (ICEM), 2010 XIX International Conference on, 2010Conference paper, Published paper (Refereed)
    Abstract [en]

    This paper presents the ongoing work of constructing a complete driveline for an electric road vehicle, using a flywheel as auxiliary energy storage. The flywheel energy storage system (FESS) is connected in series between the main energy storage (batteries) and the wheel motor of the vehicle, allowing the batteries to deliver power to the system in an optimized way, while at the same time making efficient use of regenerative braking. A double wound permanent magnet electric machine is used to electrically separate the two sides. In order to minimize losses, the machine has a double rotor configuration and is suspended with magnetic bearings. A bench test set-up is being constructed to investigate the properties of this system in detail. This set-up will achieve a level of power and energy close to that of a full scale system. This will allow measurements of complete drive cycles to be performed, improving the understanding of the constituting components and optimization of the complete system.

    Keywords
    electric drives, flywheels, magnetic bearings, permanent magnet machines, regenerative braking, road vehicles, auxiliary energy storage, double rotor configuration, double wound permanent magnet electric machine, electric driveline, electric road vehicle, flywheel energy storage system, magnetically levitated double wound motor, wheel motor
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:uu:diva-140370 (URN)
    Conference
    International Conference on Electrical Machines, ICEM
    Available from: 2011-01-05 Created: 2011-01-05 Last updated: 2016-04-18Bibliographically approved
    2. Magnetic bearings in kinetic energy storage systems for vehicular applications
    Open this publication in new window or tab >>Magnetic bearings in kinetic energy storage systems for vehicular applications
    2011 (English)In: Journal of Electrical Systems, ISSN 1112-5209, Vol. 7, no 2, p. 225-236Article in journal (Refereed) Published
    Abstract [en]

    The rotating Kinetic Energy Storage System (KESS) is suitable as temporary energy storage in electric vehicles due to its insensitivity to the number of charge-discharge cycles and its relatively high specific energy. The size and weight of the KESS for a given amount of stored energy are minimized by decreasing the moment of inertia of the rotor and increasing its speed. A small and fast rotor has the additional benefit of reducing the induced gyroscopic moments as the vehicle turns. The very high resulting rotational speed makes the magnetic bearing an essential component of the system, with the Active Magnetic Bearing (AMB) being the most common implementation. The complexity and cost of an AMB can be reduced by integration with the electric machine, resulting in a bearingless and sensorless electric machine. This review article describes the usage of magnetic bearings for FESS in vehicular applications.

    Keywords
    Magnetic bearing, FESS, flywheel, energy storage, electric vehicle
    National Category
    Engineering and Technology
    Research subject
    Engineering Science with specialization in Science of Electricity
    Identifiers
    urn:nbn:se:uu:diva-165038 (URN)
    Available from: 2012-01-02 Created: 2012-01-02 Last updated: 2017-12-08Bibliographically approved
    3. Prototype of Kinetic Energy Storage System for Electrified Utility Vehicles in Urban Traffic
    Open this publication in new window or tab >>Prototype of Kinetic Energy Storage System for Electrified Utility Vehicles in Urban Traffic
    2012 (English)Conference paper, Published paper (Refereed)
    Place, publisher, year, edition, pages
    Arlington, Virginia, USA: , 2012
    National Category
    Engineering and Technology
    Research subject
    Engineering Science with specialization in Science of Electricity
    Identifiers
    urn:nbn:se:uu:diva-190197 (URN)
    Conference
    13th International Symposium on Magnetic Bearings
    Available from: 2013-01-07 Created: 2013-01-07 Last updated: 2017-04-06
    4. On the Efficiency of a Two-Power-Level Flywheel-Based All-Electric Driveline
    Open this publication in new window or tab >>On the Efficiency of a Two-Power-Level Flywheel-Based All-Electric Driveline
    Show others...
    2012 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 5, no 8, p. 2794-2817Article in journal (Refereed) Published
    Abstract [en]

    This paper presents experimental results on an innovative electric driveline employing a kinetic energy storage device as energy buffer. A conceptual division of losses in the system was created, separating the complete system into three parts according to their function. This conceptualization of the system yielded a meaningful definition of the concept of efficiency. Additionally, a thorough theoretical framework for the prediction of losses associated with energy storage and transfer in the system was developed. A large number of spin-down tests at varying pressure levels were performed. A separation of the measured data into the different physical processes responsible for power loss was achieved from the corresponding dependence on rotational velocity. This comparison yielded an estimate of the perpendicular resistivity of the stranded copper conductor of 2.5 x 10(-8) +/- 3.5 x 10(-9). Further, power and energy were measured system-wide during operation, and an analysis of the losses was performed. The analytical solution was able to reproduce the measured distribution of losses in the system to an accuracy of 4.7% (95% CI). It was found that the losses attributed to the function of kinetic energy storage in the system amounted to between 45% and 65%, depending on usage.

    Keywords
    kinetic energy storage, flywheel, electric machine, driveline, electric vehicle, losses
    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Research subject
    Engineering Science with specialization in Science of Electricity
    Identifiers
    urn:nbn:se:uu:diva-182543 (URN)10.3390/en5082794 (DOI)000308241500011 ()
    Available from: 2012-10-11 Created: 2012-10-11 Last updated: 2017-12-07Bibliographically approved
    5. A Fully Levitated Cone-Shaped Lorentz-Type Self-Bearing Machine With Skewed Windings
    Open this publication in new window or tab >>A Fully Levitated Cone-Shaped Lorentz-Type Self-Bearing Machine With Skewed Windings
    2014 (English)In: IEEE transactions on magnetics, ISSN 0018-9464, E-ISSN 1941-0069, Vol. 50, no 9, article id 8101809Article in journal (Refereed) Published
    Abstract [en]

    Brushless dc coreless electric machines with double-rotor and single-stator configuration have very low losses, since the return path of the magnetic flux rotates with the permanent magnets. The eddy-current loss in the stator is additionally very small due to the lack of iron, making it ideal for kinetic energy storage. This paper presents a design for self-bearing rotor suspension, achieved by placing the stator windings skewed on a conical surface. A mathematical analysis of the force from a skewed winding confined to the surface of a cone was found. The parametric analytical expressions of the magnitude and direction of force and torque were verified by finite-element method simulations for one specific geometry. A dynamic model using proportional-integral-differential control was implemented in MATLAB/Simulink, and the currents needed for the self-bearing effect were found by solving an underdetermined system of linear equations. External forces, calculated from acceleration measurements from a bus in urban traffic, were added to simulate the dynamic environment of an electrical vehicle.

    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Identifiers
    urn:nbn:se:uu:diva-212105 (URN)10.1109/TMAG.2014.2321104 (DOI)000343036900019 ()
    Available from: 2013-12-05 Created: 2013-12-05 Last updated: 2017-12-06Bibliographically approved
    6. Passive Axial Thrust Bearing for a Flywheel Energy Storage System
    Open this publication in new window or tab >>Passive Axial Thrust Bearing for a Flywheel Energy Storage System
    Show others...
    2013 (English)Conference paper, Published paper (Refereed)
    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Research subject
    Engineering Science with specialization in Science of Electricity
    Identifiers
    urn:nbn:se:uu:diva-212104 (URN)
    Conference
    The 1st Brazilian Workshop on Magnetic Bearings
    Available from: 2013-12-05 Created: 2013-12-05 Last updated: 2017-10-24
    7. High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings
    Open this publication in new window or tab >>High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings
    2014 (English)In: IEEE transactions on industrial electronics (1982. Print), ISSN 0278-0046, E-ISSN 1557-9948, Vol. 61, no 6, p. 3012-3021Article in journal (Refereed) Published
    Abstract [en]

    This paper presents the design and optimization of a high-speed (30 000 r/min) kinetic energy storage system. The purpose of the device is to function as an energy buffer storing up to 867 Wh, primarily for utility vehicles in urban traffic. The rotor comprises a solid composite shell of carbon and glass fibers in an epoxy matrix, constructed in one curing. The shell is optimized using a combined analytical and numerical approach. The radial stress in the shell is kept compressive by integrating the electric machine, thereby avoiding delamination. Radial centering is achieved through eight active electromagnetic actuators. The actuator geometry is optimized using a direct coupling between SolidWorks, Comsol, and Matlab for maximum force over resistive loss for a given current density. The optimization results in a system with 300% higher current stiffness than the reference geometry with constant flux area, at the expense of 33% higher power loss. The actuators are driven by semipassive H bridges and controlled by an FPGA. Current control at 20 kHz with a noise of less than 5 mA (95% CI) is achieved, allowing position control at 4 kHz to be implemented.

    National Category
    Other Electrical Engineering, Electronic Engineering, Information Engineering
    Research subject
    Engineering Science with specialization in Science of Electricity
    Identifiers
    urn:nbn:se:uu:diva-212101 (URN)10.1109/TIE.2013.2259782 (DOI)000329055300039 ()
    Available from: 2013-12-05 Created: 2013-12-05 Last updated: 2017-12-06Bibliographically approved
  • 26.
    Abrahamsson, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Gonçalves de Oliveira, Janaína
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    de Santiago, Juan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Lundin, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Bernhoff, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    On the Efficiency of a Two-Power-Level Flywheel-Based All-Electric Driveline2012In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 5, no 8, p. 2794-2817Article in journal (Refereed)
    Abstract [en]

    This paper presents experimental results on an innovative electric driveline employing a kinetic energy storage device as energy buffer. A conceptual division of losses in the system was created, separating the complete system into three parts according to their function. This conceptualization of the system yielded a meaningful definition of the concept of efficiency. Additionally, a thorough theoretical framework for the prediction of losses associated with energy storage and transfer in the system was developed. A large number of spin-down tests at varying pressure levels were performed. A separation of the measured data into the different physical processes responsible for power loss was achieved from the corresponding dependence on rotational velocity. This comparison yielded an estimate of the perpendicular resistivity of the stranded copper conductor of 2.5 x 10(-8) +/- 3.5 x 10(-9). Further, power and energy were measured system-wide during operation, and an analysis of the losses was performed. The analytical solution was able to reproduce the measured distribution of losses in the system to an accuracy of 4.7% (95% CI). It was found that the losses attributed to the function of kinetic energy storage in the system amounted to between 45% and 65%, depending on usage.

  • 27.
    Abrahamsson, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hedlund, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Kamf, Tobias
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Bernhoff, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings2014In: IEEE transactions on industrial electronics (1982. Print), ISSN 0278-0046, E-ISSN 1557-9948, Vol. 61, no 6, p. 3012-3021Article in journal (Refereed)
    Abstract [en]

    This paper presents the design and optimization of a high-speed (30 000 r/min) kinetic energy storage system. The purpose of the device is to function as an energy buffer storing up to 867 Wh, primarily for utility vehicles in urban traffic. The rotor comprises a solid composite shell of carbon and glass fibers in an epoxy matrix, constructed in one curing. The shell is optimized using a combined analytical and numerical approach. The radial stress in the shell is kept compressive by integrating the electric machine, thereby avoiding delamination. Radial centering is achieved through eight active electromagnetic actuators. The actuator geometry is optimized using a direct coupling between SolidWorks, Comsol, and Matlab for maximum force over resistive loss for a given current density. The optimization results in a system with 300% higher current stiffness than the reference geometry with constant flux area, at the expense of 33% higher power loss. The actuators are driven by semipassive H bridges and controlled by an FPGA. Current control at 20 kHz with a noise of less than 5 mA (95% CI) is achieved, allowing position control at 4 kHz to be implemented.

  • 28.
    Abrahamsson, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Ögren, Jim
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hedlund, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    A Fully Levitated Cone-Shaped Lorentz-Type Self-Bearing Machine With Skewed Windings2014In: IEEE transactions on magnetics, ISSN 0018-9464, E-ISSN 1941-0069, Vol. 50, no 9, article id 8101809Article in journal (Refereed)
    Abstract [en]

    Brushless dc coreless electric machines with double-rotor and single-stator configuration have very low losses, since the return path of the magnetic flux rotates with the permanent magnets. The eddy-current loss in the stator is additionally very small due to the lack of iron, making it ideal for kinetic energy storage. This paper presents a design for self-bearing rotor suspension, achieved by placing the stator windings skewed on a conical surface. A mathematical analysis of the force from a skewed winding confined to the surface of a cone was found. The parametric analytical expressions of the magnitude and direction of force and torque were verified by finite-element method simulations for one specific geometry. A dynamic model using proportional-integral-differential control was implemented in MATLAB/Simulink, and the currents needed for the self-bearing effect were found by solving an underdetermined system of linear equations. External forces, calculated from acceleration measurements from a bus in urban traffic, were added to simulate the dynamic environment of an electrical vehicle.

  • 29.
    Abrahamsson, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Estimation Problems in Array Signal Processing, System Identification, and Radar Imagery2006Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis is concerned with parameter estimation, signal processing, and applications.

    In the first part, imaging using radar is considered. More specifically, two methods are presented for estimation and removal of ground-surface reflections in ground penetrating radar which otherwise hinder reliable detection of shallowly buried landmines. Further, a study of two autofocus methods for synthetic aperture radar is presented. In particular, we study their behavior in scenarios where the phase errors leading to cross-range defocusing are of a spatially variant kind.

    In the subsequent part, array signal processing and optimal beamforming is regarded. In particular, the phenomenon of signal cancellation in adaptive beamformers due to array perturbations, signal correlated interferences and limited data for covariance matrix estimation is considered. For the general signal cancellation problem, a class of improved adaptive beamformers is suggested based on ridge-regression. Another set of methods is suggested to mitigate signal cancellation due to correlated signal and interferences based on a novel way of finding a characterization of the interference subspace from observed array data. Further, a new minimum variance beamformer is presented for high resolution non-parametric spatial spectrum estimation in cases where the impinging signals are correlated. Lastly, a multitude of enhanced covariance matrix estimators from the statistical literature are studied as an alternative to other robust adaptive beamforming methods. The methods are also applied to space-time adaptive processing where limited data for covariance matrix estimation is a common problem.

    In the third and final part the estimation of the parameters of a general bilinear problem is considered. The bilinear model is motivated by the application of identifying submarines from their electromagnetic signature and by the identification of a Hamerstein-Wiener model of a non-linear dynamic system. An efficient approximate maximum-likelihood method with closed form solution is suggested for estimating the bilinear model parameters.

  • 30.
    Abro, Mehwish
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Modelling the exfoliation of graphite for production of graphene2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The aim of my thesis is to make a theoretical model of data obtained from liquid-phase exfoliation of graphene. The production of graphene in the liquid phase exfoliation is a cost efficient method One part of this work is devotedto learn the method of production of graphene by the shear mixing technique from the graphite and to estimate some important parameters which are crucial for the process. Other part of my work is based on studying the liquid-phase exfoliation mechanism of graphene through ultrasonication technique. This method is time consuming as compared to shearmixing.

  • 31. Abu-Rmileh, Amjad
    et al.
    Garcia-Gabin, Winston
    Zambrano, Darine
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    A robust sliding mode controller with internal model for closed-loop artificial pancreas2010In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 48, no 12, p. 1191-1201Article in journal (Refereed)
  • 32. Abu-Rmileh, Amjad
    et al.
    Garcia-Gabin, Winston
    Zambrano, Darine
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Internal model sliding mode control approach for glucose regulation in type 1 diabetes2010In: Biomedical Signal Processing and Control, ISSN 1746-8094, Vol. 5, no 2, p. 94-102Article in journal (Refereed)
  • 33.
    Abuzohri, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Effektförstärkare med strömkontroll2012Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Energin är ett begrepp som används dagligen i vårt samhälle. Energin kan inte skapas men däremot kan den omvandlas till olika former, förbrukas och lagras i vissa fall. Men att omvandla energi från en form till en annan form för att sedan lagra den är en av dagens stora utmaningar inom tekniken då vi måste följa de regler som naturen dikterar. Forskning på detta område har pågått i flera decennier för att kunna ta fram lämpliga och effektiva sätt att lagra energi på. Svänghjul-system är ett sådant sätt där man kan lagra energi under begränsad tid.

    I mitt examensarbete har jag utnyttjat kunskapen som jag har lärt mig från elektronik kurserna för att konstruera en effektförstärkare med strömkontroll som användes för att driva ett svänghjul-system. Förstärkaren har byggts med elektronikkomponenter och styrs från datorn med m.h.a. styrprogrammet LabVIEW som kommunicerar med hårdvaran och kontrollerar svänghjulets rörelse.

  • 34.
    Adrian, Ehrnebo
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Single Crystalline CVD Diamond Based Devices for Power Electronics Applications2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Chemical vapor deposited single-crystalline diamond has rare material properties such as thermal conductivity five times as high as copper, a wide band gap, a high breakdown field and high carrier mobilities. This makes it a very interesting material for high power, high frequency and high temperature applications.

    In this thesis work, metal oxide semiconductor (MOS) capacitors of diamond substrate were fabricated and analyzed. The MOS capacitor is a building block of the metal oxide semiconductor field effect transistor (MOSFET). Capacitance-voltage (C-V) measurements can provide useful information of the operation of a MOS. Electrical characterization by C-V and current-voltage (I-V) measurements at temperatures ranging from 20 to 150 degrees Celsius were performed on the MOS capacitors to examine flatband and threshold voltages, oxide charge, and oxide thickness.

    At elevated temperatures, low frequency C-V curves with threshold voltages of approximately 5 V were obtained for MOS capacitors consisting of aluminum gates, a 30 nm layer of aluminum oxide, and boron doped diamond with acceptor concentration 3.1 x 1017 cm-3. The C-V measurements also showed large variations in flatband voltage for different contacts of the MOS capacitor, indicating the presence of oxide charge. Oxide thickness was also extracted from the C-V measurements, typically showing thicknesses around 15-19 nm.

    Also in this  thesis, an alternative method for reducing the electric field strength around the edges of the contact of a Schottky diode has been examined. This method consists of alternating the geometry by etching the semiconductor where the contact is to be placed. Simulations performed in Comsol Multiphysics showed that a reduction of the field strength of approximately 30 % at the contacts could be achieved by etching the substrate.

  • 35.
    af Ekenstam, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Modellering av signalbehandlingen i ett cochleaimplantat och utvärdering av modellen.2014Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A program that simulates the signal processing in a cochlear implant using the signal processing strategy ACE (Advanced Combination Encoder) was constructed. Its main purpose is to, in advance, predict and test different implant settings with the purpose to be able to predict individual patient's differences in implant settings.

     

    The program was validated using output signals processed by Cochlear Limited using their own Matlab Toolbox for implant research, NMT (Nucleus Matlab Toolbox). Identical signals were processed by the program and then compared with NMT:s output. The outputs, produced with several different identical settings matched each other well.

     

    The amplitude compression function, a vital part of the signal processing, also matched well, apart from a relative loss of strength at high input amplitudes. The program will now be used by the cochlear implant section at Uppsala University Hospital to try out individual settings for cochlear implant users. The hope for the future is that better implant settings will lead to improved speech and sound experience, especially, in the long run, with regards to music.

  • 36.
    Agrawal, Piyush
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Ahlén, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Olofsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Gidlund, Mikael
    Long Term Channel Characterization for Energy Efficient Transmission in Industrial Environments2014In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, Vol. 62, no 8, p. 3004-3014Article in journal (Refereed)
    Abstract [en]

    One of the challenges for a successful use of wireless sensor networks in process industries is to design networks with energy efficient transmission, to increase the lifetime of the deployed network while maintaining the required latency and bit-error rate. The design of such transmission schemes depend on the radio channel characteristics of the region. This paper presents an investigation of the statistical properties of the radio channel in a typical process industry, particularly when the network is meant to be deployed for a long time duration, e. g., days, weeks, and even months. Using 17-20-h-long extensive measurement campaigns in a rolling mill and a paper mill, we highlight the non-stationarity in the environment and quantify the ability of various distributions, given in the literature, to describe the variations on the links. Finally, we analyze the design of an optimal received signal-to-noise ratio (SNR) for the deployed nodes and show that improper selection of the distribution for modeling of the variations in the channel can lead to an overuse of energy by a factor of four or even higher.

  • 37. Agüero, Juan C.
    et al.
    Goodwin, Graham C.
    Lau, Katrina
    Wang, Meng
    Silva, Eduardo I.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Three-degree of freedom adaptive power control for CDMA cellular systems2009In: Proc. 28th Global Telecommunications Conference, IEEE Communications Society, 2009, p. 2793-2798Conference paper (Refereed)
  • 38.
    Ahani, Ghafour
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Yuan, Di
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    On optimal proactive and retention-aware caching with user mobility2018In: Proc. 88th Vehicular Technology Conference, IEEE, 2018Conference paper (Refereed)
  • 39.
    Ahgren, Per
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Jakobsson, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    A study of doubletalk detection performance in the presence of acoustic echo path changes2006In: IEEE transactions on consumer electronics, ISSN 0098-3063, E-ISSN 1558-4127, Vol. 52, no 2, p. 515-522Article in journal (Refereed)
    Abstract [en]

    An efficient and well-performing double-talk detection (DTD) algorithm is a vital part of a practically working acoustic echo canceller. However, recent algorithms are typically evaluated using a static time-invariant room acoustic impulse response, omitting a proper treatment of the case when the acoustic path is changing. In this work, we introduce a common framework to objectively evaluate how path changes affect the DTD performance. Via extensive numerical simulations, we conclude that the main factor in acoustic path changes affecting the DTD performance for some of the more common DTD algorithms is variations in the damping of the acoustic path.

  • 40.
    Ahlberg, Patrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Graphene Implementation Study in Semiconductor Processing2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Graphene, with its two-dimensional nature and unique properties, has for over a decade captured enormous interests in both industry and academia. This work tries to answer the question of what would happen to graphene when it is subjected to various processing conditions and how this would affect the graphene functionality. The focus is placed on its ability to withstand different thin-film deposition environments with regard to the implementation of graphene in two application areas: as a diffusion barrier and in electronic devices.

    With single-layer graphene films grown in-house by means of chemical vapor deposition (CVD), four techniques among the well-established thin-film deposition methods are studied in detail: atomic layer deposition (ALD), evaporation, sputter-deposition and spray-deposition. And in this order, these methods span a large range of kinetic impact energies from low to high. Graphene is known to have a threshold displacement energy of 22 eV above which carbon atoms are ejected from the lattice. Thus, ALD and evaporation work with energies below this threshold, while sputtering and spraying may involve energies above. The quality of the graphene films undergone the various depositions is mainly evaluated using Raman spectroscopy.

    Spray deposition of liquid alloy Ga-In-Sn is shown to require a stack of at least 4 layers of graphene in order to act as an effective barrier to the Ga diffusion after the harsh spray-processing. Sputter-deposition is found to benefit from low substrate temperature and high chamber pressure (thereby low kinetic impact energy) so as to avoid damaging the graphene. Reactive sputtering should be avoided. Evaporation is non-invasiveness with low kinetic impact energy and graphene can be subjected to repeated evaporation and removal steps without losing its integrity. With ALD, the effects on graphene are of different nature and they are investigated in the field-effect-transistor (FET) configuration. The ALD process for deposition of Al2O3 films is found to remove undesired dopants from the prior processing and the Al2O3 films are shown to protect the graphene channel from doping by oxygen. When the substrate is turned hydrophobic by chemical treatment prior to graphene transfer-deposition, a unipolar transistor behavior is obtained.

    List of papers
    1. A two-in-one process for reliable graphene transistors processed with photolithography
    Open this publication in new window or tab >>A two-in-one process for reliable graphene transistors processed with photolithography
    Show others...
    2015 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 107, no 20, article id 203104Article in journal (Refereed) Published
    Abstract [en]

    Research on graphene field-effect transistors (GFETs) has mainly relied on devices fabricated using electron-beam lithography for pattern generation, a method that has known problems with polymer contaminants. GFETs fabricated via photo-lithography suffer even worse from other chemical contaminations, which may lead to strong unintentional doping of the graphene. In this letter, we report on a scalable fabrication process for reliable GFETs based on ordinary photo-lithography by eliminating the aforementioned issues. The key to making this GFET processing compatible with silicon technology lies in a two-in-one process where a gate dielectric is deposited by means of atomic layer deposition. During this deposition step, contaminants, likely unintentionally introduced during the graphene transfer and patterning, are effectively removed. The resulting GFETs exhibit current-voltage characteristics representative to that of intrinsic non-doped graphene. Fundamental aspects pertaining to the surface engineering employed in this work are investigated in the light of chemical analysis in combination with electrical characterization.

    National Category
    Physical Sciences Engineering and Technology
    Identifiers
    urn:nbn:se:uu:diva-269191 (URN)10.1063/1.4935985 (DOI)000365688700049 ()
    Funder
    Knut and Alice Wallenberg Foundation, 2011.0113, 2011.0082Swedish Foundation for Strategic Research , SE13-0061Swedish Research Council, 621-2014-5591
    Available from: 2015-12-14 Created: 2015-12-14 Last updated: 2017-12-01Bibliographically approved
    2. Interface Dependent Effective Mobility in Graphene Field Effect Transistors
    Open this publication in new window or tab >>Interface Dependent Effective Mobility in Graphene Field Effect Transistors
    2018 (English)In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 47, no 3, p. 1757-1761Article in journal (Refereed) Published
    Abstract [en]

    By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

    National Category
    Engineering and Technology Electrical Engineering, Electronic Engineering, Information Engineering
    Research subject
    Engineering Science with specialization in Electronics
    Identifiers
    urn:nbn:se:uu:diva-284924 (URN)10.1007/s11664-017-6023-6 (DOI)000424341700002 ()
    Funder
    Knut and Alice Wallenberg Foundation, 2011.0082Swedish Research Council, 2014-5591
    Available from: 2016-04-19 Created: 2016-04-19 Last updated: 2018-04-11Bibliographically approved
    3. Defect formation in graphene during low-energy ion bombardment
    Open this publication in new window or tab >>Defect formation in graphene during low-energy ion bombardment
    Show others...
    2016 (English)In: APL Materials, ISSN 2166-532X, Vol. 4, no 4, article id 046104Article in journal, Letter (Refereed) Published
    Abstract [en]

    This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose) as well as their energies are varied in the range of a few eV's up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

    National Category
    Materials Chemistry Nano Technology
    Identifiers
    urn:nbn:se:uu:diva-284702 (URN)10.1063/1.4945587 (DOI)000375846100007 ()
    Funder
    Knut and Alice Wallenberg Foundation, 2011.0082Swedish Research Council, 2014-5591 2014-6463
    Available from: 2016-04-19 Created: 2016-04-19 Last updated: 2017-01-25Bibliographically approved
    4. Toward synthesis of oxide films on graphene with sputtering based processes
    Open this publication in new window or tab >>Toward synthesis of oxide films on graphene with sputtering based processes
    2016 (English)In: Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, ISSN 2166-2746, E-ISSN 2166-2754Article in journal (Refereed) Submitted
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:uu:diva-284706 (URN)
    External cooperation:
    Available from: 2016-04-19 Created: 2016-04-19 Last updated: 2017-11-30
    5. Graphene as a Diffusion Barrier in Galinstan-Solid Metal Contacts
    Open this publication in new window or tab >>Graphene as a Diffusion Barrier in Galinstan-Solid Metal Contacts
    Show others...
    2014 (English)In: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 61, no 8, p. 2996-3000Article in journal (Refereed) Published
    Abstract [en]

    This paper presents the use of graphene as a diffusion barrier to a eutectic Ga-In-Sn alloy, i.e., galinstan, for electrical contacts in electronics. Galinstan is known to be incompatible with many conventional metals used for electrical contacts. When galinstan is in direct contact with Al thin films, Al is readily dissolved leading to the formation of Al oxides present on the surface of the galinstan droplets. This reaction is monitored ex situ using several material analysis methods as well as in situ using a simple circuit to follow the time-dependent resistance variation. In the presence of a multilayer graphene diffusion barrier, the Al-galinstan reaction is effectively prevented for galinstan deposited by means of drop casting. When deposited by spray coating, the high-impact momentum of the galinstan droplets causes damage to the multilayer graphene and the Al-galinstan reaction is observed at some defective spots. Nonetheless, the graphene barrier is likely to block the formation of Al oxides at the Al/galinstan interface leading to a stable electrical current in the test circuit.

    National Category
    Other Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology
    Research subject
    Engineering Science with specialization in Electronics; Engineering Science with specialization in Microsystems Technology
    Identifiers
    urn:nbn:se:uu:diva-229503 (URN)10.1109/TED.2014.2331893 (DOI)000342906200056 ()
    Available from: 2014-08-10 Created: 2014-08-10 Last updated: 2017-12-05Bibliographically approved
    6. Scalable residue-free graphene for surface-enhanced Raman scattering
    Open this publication in new window or tab >>Scalable residue-free graphene for surface-enhanced Raman scattering
    Show others...
    2016 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 98, p. 567-571Article in journal (Refereed) Published
    Abstract [en]

    A room-temperature polymer-assisted transfer process is developed for large-area, single-layer graphene grown by means of chemical vapor deposition (CVD). This process leads to transferred graphene layers free of polymer contamination. The absence of polymer residues boosts the surface-enhanced Raman scattering (SERS) of the CVD graphene with gold nanoparticles (Au NPs) deposited atop by evaporation. The SERS enhancement of the CVD graphene reaches similar to 120 for the characteristic 2D peak of graphene, the highest enhancement factor achieved to date, when the Au NPs are at the threshold of percolation. Our simulation supported by experiment suggests that the polymer residues persistently present on the graphene transferred by the conventional polymer-assisted method are equivalent to an ultrathin film of less than 1 nm thickness. The presence of polymer residues drastically reduces SERS due to the separation of the Au NPs from the underlying graphene. The scalability of CVD graphene opens up for the possibility of graphene-based SERS sensors.

    National Category
    Physical Sciences Engineering and Technology
    Identifiers
    urn:nbn:se:uu:diva-269192 (URN)10.1016/j.carbon.2015.11.043 (DOI)000367233000070 ()
    Funder
    Knut and Alice Wallenberg Foundation, 2011.0113Knut and Alice Wallenberg Foundation, 2011.0082Swedish Foundation for Strategic Research , SE13-0061Swedish Research Council, 621-2014-5591
    Available from: 2015-12-14 Created: 2015-12-14 Last updated: 2017-12-01Bibliographically approved
  • 41.
    Ahlberg, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hinnemo, Malkolm
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Zhang, Shi-Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Olsson, Jörgen
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Interface Dependent Effective Mobility in Graphene Field Effect Transistors2018In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 47, no 3, p. 1757-1761Article in journal (Refereed)
    Abstract [en]

    By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

  • 42.
    Ahlberg, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Seung, Hee Jeong
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Jiao, Mingzhi
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Wu, Zhigang
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Zhang, Shi-Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Zhang, Zhi-Bin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Graphene as a Diffusion Barrier in Galinstan-Solid Metal Contacts2014In: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 61, no 8, p. 2996-3000Article in journal (Refereed)
    Abstract [en]

    This paper presents the use of graphene as a diffusion barrier to a eutectic Ga-In-Sn alloy, i.e., galinstan, for electrical contacts in electronics. Galinstan is known to be incompatible with many conventional metals used for electrical contacts. When galinstan is in direct contact with Al thin films, Al is readily dissolved leading to the formation of Al oxides present on the surface of the galinstan droplets. This reaction is monitored ex situ using several material analysis methods as well as in situ using a simple circuit to follow the time-dependent resistance variation. In the presence of a multilayer graphene diffusion barrier, the Al-galinstan reaction is effectively prevented for galinstan deposited by means of drop casting. When deposited by spray coating, the high-impact momentum of the galinstan droplets causes damage to the multilayer graphene and the Al-galinstan reaction is observed at some defective spots. Nonetheless, the graphene barrier is likely to block the formation of Al oxides at the Al/galinstan interface leading to a stable electrical current in the test circuit.

  • 43. Ahlgren, Bengt
    et al.
    Hidell, Markus
    Ngai, Edith C.-H.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Internet of Things for smart cities: Interoperability and open data2016In: IEEE Internet Computing, ISSN 1089-7801, E-ISSN 1941-0131, Vol. 20, no 6, p. 52-56Article in journal (Refereed)
  • 44. Ahlgren Peters, Adam
    et al.
    Söderholm, Robin
    Wahlmark, Rickard
    Analog gitarrförstärkare: med rörliknande egenskaper2017Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 45.
    Ahlström, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Åsktransienter och överspänningar: En spänningsfylld simulering av elkraftsystemet vid Forsmark 32014Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A power system will inevitably be subjected to transient overvoltages, most often produced by switching operations and lightning strikes. These transient overvoltages may harm sensitive equipment without sufficient protection, but it is not an easy task to predict what transients may occur or how they affect the system. A fault occurred in a low voltage system at Forsmark 2012 and overvoltages from lightning were concluded as the probable cause. The three aims with this thesis are to develop and test a model of the power system at Forsmark 3, analyse the transient behaviour of the system when subjected to lightning surges and identify critical parameters, and lastly to provide a tool for investigating the protection of the system. The modelling and simulations were performed in the freely available simulation program LT Spice. Challenges and difficulties have been to obtain parameter values for components that are relevant for the high frequencies produced by the short rise time in lightning surges. The main conclusions are: the maximum current in the lightning discharge has the largest impact on the system voltages and surges in the external grid can produce standing waves in the system, causing significant overvoltages even in low voltage systems. The simulations produced larger overvoltages than would occur in a real system, which also would dampen the high frequency signals to a larger extent. Further work to obtain models better suited for high frequency simulation is suggested.

  • 46.
    Ahlén, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences, Signal Processing. Signals and systems.
    Lindbom, L
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences, Signal Processing. Signals and systems.
    Sternad, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences, Signal Processing. Signals and systems.
    Analysis of stability and performance of adaptation algorithms with time-invariant gains2004In: IEEE Transactions on Signal Processing, Vol. 52, p. 103-116Article in journal (Refereed)
  • 47.
    Ahlén, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Materials Science. SIGNALS AND SYSTEMS.
    Sternad, M
    Lindbom, L
    Iterative Wiener design of adaptation laws with constant gains2001In: IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT, 2001Conference paper (Refereed)
  • 48.
    Ahlén, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Ahlgren, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Grönroos, Roland
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Gunningberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Hjort, Klas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Katardjiev, Ilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rohner, Christian
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Presentation of the VINN Excellence Center for Wireless Sensor Networks (WISENET)2008In: Conference on Radio Science (RVK08), Växjö, 2008Conference paper (Refereed)
  • 49. Ahmad, H.
    et al.
    Coppens, S.
    Uzunoglu, Bahri
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Connection of an Offshore Wind Park to HVDC Converter Platform without Using Offshore AC Collector Platforms2013In: Green Technologies Conference, 2013 IEEE, 2013, p. 400-406Conference paper (Refereed)
  • 50.
    Ahmad, Mohd Riduan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. Universiti Teknikal Malaysia Melaka.
    Interaction of Lightning Flashes with Wireless Communication Networks: Special Attention to Narrow Bipolar Pulses2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, the features of electric field signatures of narrow bipolar pulses (NBPs) generated by cloud flashes are investigated and their effects on wireless communication systems are studied. A handful amount of NBPs (14.5%) have been observed to occur as part of cloud-to-ground flashes in South Malaysia. Occurrence of NBPs in Sweden has been reported for the first time in this thesis. The electric field waveform characteristics of NBPs as part of cloud-to-ground flashes were similar to isolated NBPs found in Sweden and South Malaysia and also to those isolated NBPs reported by previous studies from various geographical areas. This is a strong indication that their breakdown mechanisms are similar at any latitudes regardless of geographical areas.

    A comparative study on the occurrence of NBPs and other forms of lightning flashes across various geographical areas ranging from northern regions to the tropics is presented. As the latitude decreased from Uppsala, Sweden (59.8°N) to South Malaysia (1.5°N), the percentage of NBP emissions relative to the total number of lightning flashes increased significantly from 0.13% to 12%. Occurrences of positive NBPs were more common than negative NBPs at all observed latitudes. However, as latitudes decreased, the negative NBP emissions increased significantly from 20% (Sweden) to 45% (South Malaysia). Factors involving mixed-phase region elevations and vertical extents of thundercloud tops are invoked to explain the observed results. These factors are fundamentally latitude dependent.

    In this thesis, the interaction between microwave radiations emitted by cloud-to-ground and cloud flashes events and bits transmission in wireless communication networks are also presented. To the best of our knowledge, this is the first time such effects are investigated in the literature. Narrow bipolar pulses were found to be the strongest source of interference that interfered with the bits transmission.

    List of papers
    1. Signatures of Narrow Bipolar Pulses as Part of Cloud-to-Ground Flashes in Tropical Thunderstorms
    Open this publication in new window or tab >>Signatures of Narrow Bipolar Pulses as Part of Cloud-to-Ground Flashes in Tropical Thunderstorms
    2014 (English)In: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824Article in journal (Refereed) Submitted
    Keywords
    Narrow bipolar pulse; Return stroke; Tropical thunderstorm.
    National Category
    Meteorology and Atmospheric Sciences Engineering and Technology
    Research subject
    Engineering Science with specialization in Atmospheric Discharges
    Identifiers
    urn:nbn:se:uu:diva-233624 (URN)
    Available from: 2014-10-07 Created: 2014-10-07 Last updated: 2017-12-05
    2. Narrow bipolar pulses and associated microwave radiation
    Open this publication in new window or tab >>Narrow bipolar pulses and associated microwave radiation
    2013 (English)Conference paper, Published paper (Refereed)
    Place, publisher, year, edition, pages
    Stockholm: , 2013
    National Category
    Engineering and Technology
    Research subject
    Engineering Science with specialization in Science of Electricity
    Identifiers
    urn:nbn:se:uu:diva-212898 (URN)
    Conference
    Progress in Electromagnetics Research Symposium
    Available from: 2013-12-16 Created: 2013-12-16 Last updated: 2015-01-23
    3. Electric Field Signature of Narrow Bipolar Pulse Observed in Sweden
    Open this publication in new window or tab >>Electric Field Signature of Narrow Bipolar Pulse Observed in Sweden
    Show others...
    2014 (English)In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895Article in journal (Refereed) Submitted
    Keywords
    Electric field; Narrow bipolar pulse; Sweden.
    National Category
    Meteorology and Atmospheric Sciences Engineering and Technology
    Research subject
    Engineering Science with specialization in Atmospheric Discharges
    Identifiers
    urn:nbn:se:uu:diva-233636 (URN)
    Available from: 2014-10-07 Created: 2014-10-07 Last updated: 2017-12-05
    4. Latitude Dependence of Narrow Bipolar Pulse Emissions
    Open this publication in new window or tab >>Latitude Dependence of Narrow Bipolar Pulse Emissions
    Show others...
    2015 (English)In: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824, Vol. 128, p. 40-45Article in journal (Refereed) Published
    Keywords
    Latitude; Narrow bipolar pulse; Thunderstorm.
    National Category
    Meteorology and Atmospheric Sciences Engineering and Technology
    Research subject
    Engineering Science with specialization in Atmospheric Discharges
    Identifiers
    urn:nbn:se:uu:diva-233638 (URN)10.1016/j.jastp.2015.03.005 (DOI)000355717500005 ()
    Available from: 2014-10-07 Created: 2014-10-07 Last updated: 2017-12-05Bibliographically approved
    5. Similarity between the Initial Breakdown Pulses of Negative Ground Flash and Narrow Bipolar Pulses
    Open this publication in new window or tab >>Similarity between the Initial Breakdown Pulses of Negative Ground Flash and Narrow Bipolar Pulses
    2014 (English)In: 2014 INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP), IEEE conference proceedings, 2014, p. 810-813Conference paper, Published paper (Refereed)
    Abstract [en]

    In this paper, temporal characteristics of several initial electric field pulses of preliminary breakdown process (PBP) from very close negative cloud-to-ground (CG) flashes are compared to close narrow bipolar pulses (NBPs) to observe any similarity that may exists. Interestingly, we found that the initial PBP pulses are similar to close NBP with zero crossing time less than 5 mu s, do not preceded by any slow field change and followed by pronounce static component. As NBPs are believed to be a result of relativistic runaway electron avalanches discharge, this finding is an indication that the initial electric field pulses of PBP are perhaps the result of the same discharge mechanism.

    Place, publisher, year, edition, pages
    IEEE conference proceedings, 2014
    Keywords
    Narrow bipolar pulse; Preliminary breakdown pulse; Relativistic runaway electron avalanches.
    National Category
    Meteorology and Atmospheric Sciences Engineering and Technology
    Research subject
    Engineering Science with specialization in Atmospheric Discharges
    Identifiers
    urn:nbn:se:uu:diva-233639 (URN)000358572100153 ()978-1-4799-3544-4 (ISBN)
    Conference
    International Conference on Lightning Protection (ICLP), OCT 11-18, 2014, Tsinghua Univ, Shanghai, PEOPLES R CHINA
    Available from: 2014-10-07 Created: 2014-10-07 Last updated: 2015-09-03Bibliographically approved
    6. Lightning interference in multiple antennas wireless communication systems
    Open this publication in new window or tab >>Lightning interference in multiple antennas wireless communication systems
    Show others...
    2012 (English)In: Journal of Lightning Research, ISSN 1652-8034, Vol. 4, p. 155-165Article in journal (Refereed) Published
    Abstract [en]

    This paper analyzes the interference of lightning flashes with multiple antennas wireless communicationsystems operating in the microwave band at 2.4 GHz and 5.2 GHz. A bit error rate (BER) measurement method was usedto evaluate BER and packet error rate (PER) during 5 heavy thunderstorms on January 25 and March 17 to 20, 2011,respectively. In addition, BER measurements also were done on January 21 and March 30, 2011 under fair weather (FW)conditions providing a baseline for comparison. The Transmitter-Receiver separation was fixed at 10 meter with line-ofsight(LOS) consideration. We infer that lightning interfered with the transmitted digital pulses which resulted in a higherrecorded BER. The maximum recorded BER was 9.9·10-1 and the average recorded BER and PER were 2.07·10-2 and2.44·10-2 respectively during the thunderstorms with the average fair weather BER and PER values under the influence ofadjacent channel interference (ACI) and co-channel interference (CCI) being 1.75·10-5 and 7.35·10-6 respectively. Weconclude that multiple antennas wireless communication systems operating at the microwave frequency can besignificantly interfered by lightning.

    Place, publisher, year, edition, pages
    Bentham open, 2012
    National Category
    Meteorology and Atmospheric Sciences Engineering and Technology
    Research subject
    Engineering Science with specialization in Atmospheric Discharges
    Identifiers
    urn:nbn:se:uu:diva-190902 (URN)
    Available from: 2013-01-09 Created: 2013-01-09 Last updated: 2016-02-03
    7. Interference from cloud-to-ground and cloud flashes in wireless communication system
    Open this publication in new window or tab >>Interference from cloud-to-ground and cloud flashes in wireless communication system
    2014 (English)In: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 113, p. 237-246Article in journal (Refereed) Published
    Abstract [en]

    In this study, cloud-to-ground (CG) flash and intra-cloud (IC) flash events that interfere with the transmission of bits in wireless communication system operating at 2.4 GHz were analyzed. Bit error rate (BER) and consecutive lost datagram (CLD) measurement methods were used to evaluate BER and burst error from 3 tropical thunderstorms on November 27, 28, and 29 during 2012 northeastern monsoon in Malaysia. A total of 850 waveforms from the electric field change recording system were recorded and examined. Out of these, 94 waveforms of very fine structure were selected which matched perfectly with the timing information of the recorded BER. We found that both CG and IC flashes interfered significantly with the transmission of bits in wireless communication system. The severity of the interference depends mainly on two factors namely the number of pulses and the amplitude intensity of the flash. The interference level becomes worst when the number of pulses in a flash increases and the amplitude intensity of pulses in a flash intensifies. During thunderstorms, wireless communication system has experienced mostly intermittent interference due to burst error. Occasionally, in the presence of very intense NBP event, wireless communication system could experience total communication lost. In CG flash, it can be concluded that PBP is the major. source of interference that interfered with the bits transmission and caused the largest burst error. In IC flash, we found that the typical IC pulses interfered the bits transmission in the same way as PBP and mixed events in CG flash and produced comparable and in some cases higher amount of burst error. NBP has been observed to interfere the bits transmission more severely than typical IC and CG flashes and caused the most severe burst error to wireless communication system.

    Keywords
    Bit error rate, Cloud flash, Cloud-to-ground flash, Interference, Microwave radiation, Wireless system
    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Identifiers
    urn:nbn:se:uu:diva-228679 (URN)10.1016/j.epsr.2014.03.022 (DOI)000337554200032 ()
    Available from: 2014-07-22 Created: 2014-07-21 Last updated: 2017-12-05Bibliographically approved
1234567 1 - 50 of 2915
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf