uu.seUppsala University Publications
Change search
Refine search result
123 1 - 50 of 113
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Adams, Robin
    et al.
    Fincher, Sally
    Pears, Arnold
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Börstler, Jürgen
    Boustedt, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing.
    Dalenius, Peter
    Eken, Gunilla
    Heyer, Tim
    Jacobsson, Andreas
    Lindberg, Vanja
    Molin, Bengt
    Moström, Jan Erik
    Wiggberg, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    What is the word for "Engineering" in Swedish: Swedish students' conceptions of their discipline2007Report (Other academic)
  • 2. Airey, John
    Teaching and Learning in English: The experiences of students and teachers2014Conference paper (Other academic)
  • 3.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Linder, Anne
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Mayaba, Nokhanyo
    Nelson Mandela Metropolitan University.
    Webb, Paul
    Nelson Mandela Metropolitan University.
    Problematising Disciplinary Literacy in a Multilingual Society: The Case of University Physics in South Africa.2013Conference paper (Refereed)
    Abstract [en]

    Problematising Disciplinary Literacy in a Multilingual Society:The Case of University Physics in South Africa

     

    John Airey1,3 Anne Linder1, Nokhanyo Mayaba 2 & Paul Webb2

    1 Department of Physics and Astronomy, Uppsala University, Sweden.

    2 Centre for Educational Research, Technology and Innovation, Nelson Mandela Metropolitan University, South Africa.

    3 School of Languages and Literature, Linnæus University, Sweden

    john.airey@physics.uu.se, anne.linder@physics.uu.se, nokhanyo.mayaba@nmmu.ac.za, paul.webb@nmmu.ac.za

    Abstract

    Over a decade has passed since Northedge (2002) convincingly argued that the role of the university lecturer should be viewed as one of leading students on excursions into the specialist discourse of their field. In his view, disciplinary discourses have come into being in order to create and share disciplinary knowledge that could not otherwise be appropriately construed in everyday discourse. Thus, Northedge’s conclusion is that in order for disciplinary learning to occur, students will need explicit guidance in accessing and using the specialist discourse of their chosen field. Building on this work, Airey (in press) argues that all university lecturers are, at least to some extent, teachers of language—even in monolingual settings. A radical approach to this claim has been suggested by Wickman and Östman (2002) who insist that learning itself be treated as a form of discourse change.

    In an attempt to operationalise Wickman and Östman’s assertion, Airey (2011b) suggests that the goals of any undergraduate degree programme may be framed in terms of the development of disciplinary literacy. Here, disciplinary literacy is defined as the ability to appropriately participate in the communicative practices of a discipline. Further, in his subsequent work, Airey (2011a) claims that all disciplines attempt to meet the needs of three specific sites: the academy, the workplace and society. He argues that the relative emphasis placed on teaching for these three sites will be different from discipline to discipline and will indeed vary within a discipline depending on the setting. In the South African setting two questions arise from this assertion. The first is: For any given discipline, what particular balance between teaching for the academy, the workplace and society is desirable and/or practicable? The second question follows on from the first: Having pragmatically decided on the teaching balance between the academy, workplace and society, what consequences does the decision have for the language(s) that lecturers should be helping their students to interpret and use? In order to address these two questions we conducted an interview-based case study of the disciplinary literacy goals of South African university lecturers in one particular discipline (physics). Thus, our overarching research question is as follows: How do South African physics lecturers problematise the development of disciplinary literacy in their students?

    The data collected forms part of a larger international comparative study of the disciplinary literacy goals of physics lecturers in Sweden and South Africa. A disciplinary literacy discussion matrix (Airey, 2011a) was employed as the starting point for conducting in-depth, semi-structured interviews with 20 physics lecturers from five South African universities. The choice of these five universities was purposeful—their student cohorts encompassing a range of different first languages and cultural backgrounds. The interviews were conducted in English, lasted between 30 and 60 minutes, and were later transcribed verbatim. The transcripts were then analysed qualitatively. This involved “working with data, organizing it, breaking it into manageable units, synthesizing it, searching for patterns, discovering what is important and what is to be learned, and deciding what you will tell others” (Bogdan & Biklen, 1992:145).

    The main finding of this study is that all the lecturers mentioned language as being problematic in some way. However, there were a number of important differences in the ways the lecturers problematise the development of disciplinary literacy both across and within the different university physics departments. These differences can be seen to involve on the one hand, the lecturers’ own self-image in terms of whether they are comfortable with viewing themselves as language teachers/literacy developers, and on the other hand, their recognition of the diverse linguistic and cultural backgrounds of their students. The differences will be illustrated and discussed using transcript excerpts. These findings are in contrast to parallel data collected in Sweden. In that particular (bilingual) setting, language was viewed as unproblematic, and the most striking characteristic was the very similarity of the responses of physics lecturers (Airey, in press). It is thus suggested that the differences in findings between Sweden and South Africa are a product of the latter’s diverse multilingual and multicultural environment. One pedagogical conclusion is that, given the differences in approach we find, inter- and intra faculty discussions about undergraduate disciplinary literacy goals would appear to have the distinct potential for reforming undergraduate physics. Similarly, an administrative conclusion is that a one-size-fits-all language policy for universities does not appear to be meaningful in such a diverse multilingual/multicultural environment.

    Finally, it should be mentioned that our choice of physics as an exemplar in this study has important implications for the interpretation of the findings. Drawing on Bernstein (1999), Martin (2011) suggests that disciplines have predominantly horizontal or hierarchical knowledge structures. Here it is claimed that physics has the most hierarchical knowledge structure of all disciplines. Thus, the findings presented here should be taken as illustrative of the situation in disciplines with more hierarchical knowledge structures (such as the natural and applied sciences). Kuteeva and Airey (in review) find that the issue of the language of instruction in such disciplines is viewed as much less problematic than in disciplines with more horizontal knowledge structures (such as the arts, humanities and, to some extent, social sciences). See Bennett (2010) for a provocative discussion of language use in such disciplines.

    Funding from the Swedish National Research Council and the South African National Research Foundation is gratefully acknowledged.

    References:

    Airey, J. (2011a). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education. Across the disciplines, 8(3).

    Airey, J. (2011b). Initiating Collaboration in Higher Education: Disciplinary Literacy and the Scholarship of Teaching and Learning. Dynamic content and language collaboration in higher education: theory, research, and reflections (pp. 57-65). Cape Town, South Africa: Cape Peninsula University of Technology.

    Airey, J. (in press). I Don’t Teach Language. The Linguistic Attitudes of Physics Lecturers in Sweden. AILA Review, 25(2012), xx-xx.

    Bennett, K. (2010). Academic discourse in Portugal: A whole different ballgame? Journal of English for Academic Purposes, 9(1), 21-32.

    Bernstein, M. (1999). Vertical and horizontal discourse: An essay. British Journal of Sociology Education, 20(2), 157-173.

    Bogdan, R. C., & Biklen, S. R. (1992). Qualitative research for education: An introduction to theory and methods. (2 ed.). Boston: Allyn and Bacon, Inc.

    Kuteeva, M., & Airey, J. (in review). Disciplinary Differences in the Use of English in Swedish Higher Education: Reflections on Recent Policy Developments  Studies in Higher Education.

    Martin, J. R. (2011). Bridging troubled waters: Interdisciplinarity and what makes it stick. In F. Christie & K. Maton (Eds.), Disciplinarity (pp. 35-61). London: Continuum International Publishing.

    Northedge, A. (2002). Organizing excursions into specialist discourse communities: A sociocultural account of university teaching. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Sociocultural perspectives on the future of education (pp. 252-264). Oxford: Blackwell Publishers.

    Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601-623.

     

  • 4. Alfredsson, Lena
    et al.
    Bråting, Kajsa
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Erixon, Patrik
    Heikne, Hans
    Matematik 5000: kurs 3c, läromedel 2012Book (Other (popular science, discussion, etc.))
  • 5.
    Andersson Chronholm, Jannika
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Andersson, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Lär för din framtid: så lyckas du med högskolestudier2011Book (Other academic)
  • 6.
    Andersson, Staffan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Andersson Chronholm, Jannika
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Jakobsson, Tobias
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Biology Education Centre.
    Larsson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Sjöström, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
    Koyi, Hemin
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Elmgren, Maja
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry.
    Rangordningsövningar i naturvetenskap2011Book (Other academic)
  • 7.
    Andersson, Staffan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Elmgren, Maja
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Andersson Chronholm, Jannika
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Förändring av ingenjörsstudenters lärstrategier under första studieterminen2014Conference paper (Refereed)
    Abstract [sv]

    Postern beskriver hur förhållningssätt till lärande förändras för studenter på tre civilingenjörsprogram vid ett svensk universitet under första studieterminen. Utifrån analys av fritextsvar diskuteras också drivkrafterna bakom observerade förändringar.

    Undersökningen bygger på en reviderad version av Study Process Questionnaire (Biggs, Kember & Leung, 2001) som kartlägger ytinriktade och djupinriktade lärstrategier. Enkäten har tidigare översatts till svenska och använts vid Lunds Tekniska Högskola (Malm, Alveteg & Roxå, 2009). 663 nybörjarstudenter inom teknik och naturvetenskap vid Uppsala universitet besvarade en första enkät.. De startvärden som mättes för ytinriktade och djupinriktade strategier för nybörjarstudenterna var mycket snarlika de som observerades i studien från Lund.

    Förändringar under första studieperioden undersöktes genom en uppföljningsenkät på tre ingenjörsprogram. Jämförelse av svaren visade statistiskt signifikanta förändringar från djupinriktade och mot ytinriktade lärstrategier. Analys av fritextsvar visar att studenterna upplever att det främst är behovet av att finna strategier att hantera stora mängder information snabbt som leder till förändringen. Studiens resultat öppnar för diskussioner kring vad som sker under den första studietiden.

    Referenser

    Biggs, J. B., Kember, D., and Leung, D. Y. P. (2001). The Revised Two Factor Study Process Questionnaire: R-SPQ-2F. Br. J. Educ. Psychol. 71: 133–149.

    Malm, J., Alveteg, M. & Roxå, T. (2011) Are We Promoting a Surface Approach to Learning During the First Year of Engineering Educations? 3:e Utvecklingskonferensen för Sveriges ingenjörsutbildningar, Norrköping, 30 november - 1 december.

  • 8.
    Arbin, Lisa
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Arts, Department of Literature. Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Languages, Department of Scandinavian Languages.
    Älvdalsmålet under förändring: En studie genom tre generationer2013Student paper other, 10 credits / 15 HE creditsStudent thesis
  • 9.
    Axelsson, Anton
    et al.
    Lund University Cognitive Science.
    Anderberg, Erik
    Lund University Cognitive Science.
    Haake, Magnus
    Lund University Cognitive Science.
    Can preschoolers profit from a teachable agent based play-and-learn game in mathematics?2013In: Artificial Intelligence in Education: 16th International Conference, AIED 2013, Memphis, TN, USA, July 9-13, 2013. Proceedings / [ed] H. C. Lane, K. Yacef, J. Mostow & P. Pavlik, Springer Berlin/Heidelberg, 2013, Vol. 7926 LNAI, p. 289-298Conference paper (Refereed)
    Abstract [en]

    A large number of studies carried out on pupils aged 8-14 have shown that teachable agent (TA) based games are beneficial for learning. The present pioneering study aimed to initiate research looking at whether TA based games can be used as far down as preschool age. Around the age of four, theory of mind (ToM) is under development and it is not unlikely that a fully developed ToM is necessary to benefit from a TA’s socially engaging characteristics. 10 preschool children participated in an experiment of playing a mathematics game. The participants playing a TA-version of the game engaged socially with the TA and were not disturbed by his presence. Thus, this study unveils exciting possibilities for further research of the hypothesised educational benefits in store for preschoolers with regard to play-and-learn games employing TAs. 

  • 10.
    Axelsson, Anton
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Andersson, Richard
    IT Univ Copenhagen, Eye Informat Grp, Copenhagen, Denmark; Lund Univ, Lund Univ Cognit Sci, S-22100 Lund, Sweden.
    Gulz, Agneta
    Lund Univ, Lund Univ Cognit Sci, S-22100 Lund, Sweden; Linkoping Univ, Dept Comp & Informat Sci, Cognit & Interact Res Grp, S-58183 Linkoping, Sweden.
    Scaffolding executive function capabilities via play-&-learn software for preschoolers2016In: Journal of Educational Psychology, ISSN 0022-0663, E-ISSN 1939-2176, Vol. 108, no 7, p. 969-981Article in journal (Refereed)
    Abstract [en]

    Educational software in the form of games or so called "computer assisted intervention" for young children has become increasingly common receiving a growing interest and support. Currently there are, for instance, more than 1,000 iPad apps tagged for preschool. Thus, it has become increasingly important to empirically investigate whether these kinds of software actually provide educational benefits for such young children. The study presented in the present article investigated whether preschoolers have the cognitive capabilities necessary to benefit from a teachable-agent-based game of which pedagogical benefits have been shown for older children. The role of executive functions in children's attention was explored by letting 36 preschoolers (3;9-6;3 years) play a teachable-agent-based educational game and measure their capabilities to maintain focus on pedagogically relevant screen events in the presence of competing visual stimuli. Even though the participants did not succeed very well in an inhibition pretest, results showed that they nonetheless managed to inhibit distractions during game-play. It is suggested that the game context acts as a motivator that scaffolds more mature cognitive capabilities in young children than they exhibit during a noncontextual standardized test. The results further indicate gender differences in the development of these capabilities.

  • 11.
    Bayard, Sarah
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Ett steg in i animationens värld: Om ett första möte med datoranimation. Om inlärningsprocessen och inlärningsmöjligheter i bildmediet.2013Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Som bildlärarstuderande och aktiv bildskapare har det länge varit en naturlig del av mitt liv att spåna på idéer till nya bilder och skapelser. Idéerna kommer ibland som en vilja skapa bilder utifrån olika influenser. De kan dyka upp som en replik på något, eller en som vilja att återberätta någonting upplevt. Jag har tidigare arbetat mest med stilla bilder, framförallt måleri och teckning. På Uppsala Universitets bildlärarprograms sista termin får vi studerande chansen att fördjupa oss i en bildform och med den skapa en visuell gestaltning till den skriftliga c-uppsatsen. Efter att många av mina idéer jag fått den senaste tiden passade bäst som film, idéer som spände över tid och dessutom inte höll sig innanför det realistiskas ramar, kom jag fram till mitt val av undersökningsområde och gestaltning i uppsatsen, jag bestämde mig för att ta ett steg in i datoranimationens värld. I uppsatsen har jag undersökt processen bakom att lära sig datoranimation i 2D i syfte att förstå vilka inlärningsmöjligheter som ligger i arbete med mediet. Som undersökningsobjekt har jag haft min egen inlärnings och skapandeprocess under mina två första månaders arbete med animation.

  • 12.
    Bengtson, Charlotta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
    Ahlkvist, Mikaela
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Ekeroth, William
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Nilsen-Moe, Astrid
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Proos Vedin, Nathalie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Rodiuchkina, Katerina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Ye, Sofie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Lundberg, Marcus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
    Working as Partners: Course Development by a Student–Teacher Team2017In: International Journal for the Scholarship of Teaching & Learning, ISSN 1931-4744, E-ISSN 1931-4744, Vol. 11, no 2, article id Article 6Article in journal (Refereed)
    Abstract [en]

    A first-year undergraduate course at Uppsala University has been redesigned in a process exploring differentlevels of student participation. In the first part of the project, the student voice was heard through interviewsfocusing on the role of the course in the degree program. In the second part, a student-teacher team wasformed to develop course curriculum and teaching material in partnership. Among the implemented changeswere new seminars focusing on conceptual understanding, redesign of all lectures to include active studentparticipation, and a change of the course literature. The redesigned course significantly increased studentsatisfaction compared to previous years. Important success factors were involvement of the studentorganization to promote the project, institutional support, early selection of concrete development tasks, andallowing team members to choose what they wanted to develop according to their own expertise.

  • 13.
    Bengtson, Charlotta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
    Lundberg, Marcus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
    Studentmedverkan i utvecklingen av kursen ”Fysik för kemister”2016In: För pedagogisk utveckling tillsammans: Lärare och studenter som medskapare av utbildningen / [ed] Katarina Andreasen och Maria Magnusson, Uppsala: Uppsala universitet, 2016, p. 20-26Conference paper (Other academic)
    Abstract [sv]

    Vi utforskar olika nivåer av studentmedverkan i utvecklingen av kursen ’Fysik för kemister’ på kandidatprogrammet i kemi vid Uppsala universitet. Målet med kursen är att ge alla studenter, även de med en självupplevt svag fysikbakgrund, en god grund för framtida studier i kemi. För att nå dit vill vi bjuda in en bred grupp av studenter att bli medskapare av en bättre kurs. Projektets första steg var att intervjua sex studenter i olika steg av utbildningen, fyra kvinnor och två män. Två av studenterna har redan läst hela kandidatutbildningen och har ett unikt perspektiv över vilken nytta de har haft av kursen i sin utbildning, samt vilka kunskaper de egentligen hade behövt. Resultaten från intervjuerna har använts för att skriva en ny kursplan samt att utveckla nya former av studentaktiv undervisning. Nästa steg, som fortfarande pågår, är att öka deltagandenivån genom att arbeta i en kursutvecklingsgrupp, bestående av sex studenter från olika årskurser samt två lärare.

  • 14.
    Berg, Gita
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Food, Nutrition and Dietetics.
    Students´ Encounters during Formalized Cooking Practices in Home‐  and Consumer Studies2018Conference paper (Refereed)
    Abstract [en]

    Introduction

    Cooking a meal is a complex event that involves coordinating muscle movements and cognitions while at the same time responding to sensorial perceptions and navigating and shaping societal structures (Wolfson et al., 2017). The art of cooking has traditionally been transferred through apprenticeship, involving continuous engagement with the physical and sensory qualities of food (Jaffe & Gertler, 2006). In Sweden, cooking is by tradition a prominent part of the Home- and consumer studies (HCS) education and a common arrangement of a HCS lesson is that students, by following a recipe, prepare a complete meal together and then eat it (Hjälmeskog, 2006; Lindblom, Erixon Arreman, Bohm, & Hörnell, 2016). These formalized cooking practices entail a great potential to enrich students’ food- and cooking-related experiences and meaning making. However, little is documented about situations that occur during formalized cooking practices in HCS, and what consequences for the students´ meaning making these situations bring about. The present study will target this research gap, and the research questions are: Which encounters can be seen to disrupt the students’ activity during formalized cooking practices in HCS class? How do the students act to proceed with the activity in these situations? What consequences can be seen for the students’ meaning making?

    As a theoretical point of departure, a pragmatist, transactional understanding of meaning making is held. ‘Meaning making’ is used to describe learning processes that include individual- as well as social and institutional aspects (Rogoff, 1995). This way of making meaning by acting in the world is what Dewey, in his later works, calls transaction (Dewey & Bentley, 1960). To use the words of Wickman (2004), ‘the meaning people make is always imbedded in a practice with its aims and the socially shared meanings needed for participating’ (Wickman, 2004, p. 327). In accordance with John Dewey´s transactional perspective, meaning making is consequently seen as continuous and visible in, and through, students´ actions (Dewey, 1938/1997).

    Method

    As a part of a more extensive case study where the data collection takes place during the full school year of 2017/2018, the author conducted classroom observations of HCS lessons in one school class at an elementary school in Stockholm, Sweden during fall 2017. Study participants were two HCS-teachers and a total of ten students in Swedish eighth grade (13-14 years of age), some of them being observed at more than one occasion. The material consists of digital video documentation from the observations, where the students cook in pairs. The observed occasions were selected in agreement with the participating teachers and met the criteria of including practical elements of cooking. Videos from fourteen observations recorded during seven different occasions are included, each comprising on average 44 minutes of video recording and resulting in a total of 616 minutes of video data. Ethical guidelines by the Swedish Research Council (2002) are followed throughout the research process and an approval by the Regional Ethical Review Board in Uppsala have been obtained (ref. no. 2017/230).

    The teachers´ and students´ actions during the cooking sessions were studied through practical epistemology analysis (PEA) (Wickman & Östman, 2002). The emphasis was on describing what the students encounter, how they act to proceed with the activity, and the relationship in-between. Actions are not only considered in terms of physical movements of the body; the students also act (and make meaning) through participation in language-games. Thus, rather than considering the students´ talk in a representative, mentalist way as outer statements of an unknown inner mind, focus was on the use of words and utterances in situated action (cf. Wickman, 2006, p. 32). The initial analysis was primarily conducted by the author. However, the preliminary results presented below have been agreed upon in discussion with two associated researchers.

    Preliminary results

    Preliminary results show that the students struggle when facing cooking steps that require subjective assessments based on sensory experiences, e.g. when they need to look at, or feel, the food to make decisions. The students carry out repetitive actions and/or look for support from their surrounding (e.g. peers, teachers) to be able to move on with the activity in a fruitful way. These strategies can have a negative impact on the sensory qualities of the food, and lead to socially shared meanings that are not in accordance with the teacher´s intentions. Awareness of the students’ meaning making in the classroom practice encourages a discussion about teachers’ roles, choices and potential consequences of these.

    References

    Dewey, J. (1938/1997) Experience and education. New York: Touchstone.               

    Dewey, J., & Bentley, A. F. (1960) Knowing and the known. Boston: Beacon Press.                               

    Hjälmeskog, K. (Red.). (2006) Lärarprofession i förändring: från ”skolkök” till hem- och konsumentkunskap. Uppsala: Föreningen för svensk undervisningshistoria.   

    Jaffe, J., & Gertler, M. (2006). Victual vicissitudes: Consumer deskilling and the (gendered) transformation of food systems. Agriculture and Human Values, 23(2), 143-162.    

    Lindblom, C., Erixon Arreman, I., Bohm, I., & Hörnell, A. (2016). The importance of time frames in Swedish Home and Consumer Studies. International Journal of Consumer Studies, 40(3), 299-308. 

    Rogoff, B. (1995) Observing sociocultural activity on three planes: Participatory appropriation, guided participation, and apprenticeship. In James Wertsch, Pablo del Rio and Amelia Alvarez (eds.) Sociocultural Studies of Mind. (pp. 139-164). Cambridge: Cambridge University Press.                     

    The Swedish Research Council (2002), Forskningsetiska principer inom humanistisk och samhällsvetenskaplig forskning (Research Ethics in Social Sciences), Swedish Research Council, available at: www.codex.vr.se/texts/HSFR.pdf.   

    Wickman, P-O. (2006) Aesthetic experience in science education: Learning and meaning-making as situated talk and action. New York: Routledge.

    Wickman, P-O. (2004) The practical epistemologies of the classroom: A study of laboratory work. Science education, 88(3), 325-44. 

    Wickman, P-O. & Östman, L. (2002) Learning as discourse change: a sociocultural mechanism. Science Education, 86(5), 601-3.                                                                                         

    Wolfson, J. A., Bostic, S., Lahne, J., Morgan, C., Henley, S. C., Harvey, J., & Trubek, A. (2017). A comprehensive approach to understanding cooking behavior: Implications for research and practice. British Food Journal, 119(5), 1147-1158.

  • 15.
    Berghuijs, Wouter R.
    et al.
    Department of Civil Engineering, University of Bristol, Bristol, UK.
    Harrigan, Shaun
    Irish Climate Analysis and Research Units (ICARUS), Department of Geography, Maynooth University, Maynooth, Ireland.
    Kipnis, Evan L.
    Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA.
    Dogulu, Nilay
    Department of Civil Engineering, Middle East Technical University, Ankara, Turkey.
    Floriancic, Marius
    Institute of Environmental Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
    Müller, Hannes
    Institute of Water Resources Management, Hydrology and Agricultural Hydraulic Engineering, Leibniz Universität Hannover, Hanover, Germany.
    Pohle, Ina
    Chair of Hydrology and Water Resources Management, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany .
    Saia, Sheila M.
    Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA.
    Sedlar, Frank
    Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA.
    Smoorenburg, Maarten
    Institute of Environmental Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
    Teutschbein, Claudia
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    van Emmerik, Tim
    Water resources section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands.
    Creating Community for Early-Career Geoscientists: Student involvement in geoscience unions: A case study from hydrology2015In: EOS: Transactions, ISSN 0096-3941, E-ISSN 2324-9250, Vol. 96Article in journal (Refereed)
    Abstract [en]

    The American Geophysical Union (AGU) and the European Geosciences Union (EGU) play central roles in nurturing the next generation of geoscientists. Students and young scientists make up about one quarter of the unions’ active memberships [American Geophysical Union, 2013; European Geosciences Union, 2014], creating a major opportunity to include a new generation of geoscientists as more active contributors to the organizations’ activities, rather than merely as consumers.

    Both organizations are now explicitly expanding their bottom-up organizational structures to include early-career members (ECMs) by appointing student (AGU) and early-career scientist (EGU) representatives for their scientific divisions. (We refer to “early-career members” because AGU and EGU define student and postdoc members differently). Because this expansion is a recent development, it is still unclear what roles these representatives will play and how these roles will evolve over the coming years.

    We are ECMs in the hydrological sciences. Here we show how the Young Hydrological Society (YHS) used bottom-up initiatives, aligned closely with the newly appointed AGU and EGU representatives, to help improve the professional development of student and postdoc members by providing opportunities to increase their contributions to the geoscience unions. We call for a conversation on how ECMs can make the best use of these new opportunities to engage proactively with the unions.

  • 16.
    Berglund, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing.
    What do CS students try to learn?: Insights from a distributed, project-based course in computer systems2006In: Computer Science Education, ISSN 0899-3408, E-ISSN 1744-5175, Vol. 16, p. 185-195Article in journal (Refereed)
  • 17.
    Berglund, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing.
    What do our students strive for?: Insights from a distributed, project-based course in computer systems2005In: Proc. 5th Finnish/Baltic Sea Conference on Computer Science Education: Koli Calling, Finland: Turku Centre for Computer Science , 2005, p. 65-72Conference paper (Other academic)
  • 18.
    Berglund, Anders
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing.
    Pears, Arnold
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    East, Philip
    Kinnunen, Päivi
    Malmi, Lauri
    McCartney, Robert
    Moström, Jan Erik
    Murphy, Laurie
    Ratcliffe, Mark
    Schulte, Carsten
    Simon, Beth
    Stamouli, Ioanna
    Thomas, Lynda
    Learning computer science: Perceptions, actions and roles2009In: European Journal of Engineering Education, ISSN 0304-3797, E-ISSN 1469-5898, Vol. 34, p. 327-338Article in journal (Refereed)
  • 19.
    Boström, Ylva
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Hofstedt, Sofia
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    "Är matte verkligen viktigt?": En forskningsöversikt om matematiken i förskolan2015Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Matematik är en viktig del av människans vardag. De svenska resultaten i matematik sjunker enligt PISA-undersökningen 2012. Det ställer krav på förskolan som anses vara inkörsporten till barns matematiska lärande. Matematik fick en plats i barnträdgårdar och småbarnsskolor redan under 1860-talet men hur ser det ut i dagens förskolor? Den här tematiska analysen granskar delar av de senaste 6 årens forskning om matematik i förskolan. Studien visar att lärandet och den tidiga matematiken är en grundförutsättning för barns matematiska lärande. Det finns såväl kulturella aspekter som genusaspekter att ta hänsyn till samtidigt som pedagogerna har en väldigt viktig uppgift som de inte alltid känner sig helt trygga med. Det finns en mängd strategier att både lära in och lära ut matematik. Inget område inom matematiken är rättframt utan alla har sina specifika problemområden.

  • 20.
    Boustedt, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    A methodology for exploring students' experiences and interaction with large-scale software through role-play and phenomenography2008In: Proc. 4th International Computing Education Research Workshop, New York: ACM Press , 2008, p. 27-38Conference paper (Refereed)
  • 21.
    Boustedt, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    A student perspective on software development and maintenance2010Report (Other academic)
  • 22.
    Boustedt, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Students' understanding of the concept of interface in a situated context2009In: Computer Science Education, ISSN 0899-3408, E-ISSN 1744-5175, Vol. 19, p. 15-36Article in journal (Refereed)
  • 23.
    Boustedt, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Ways to understand class diagrams2010Report (Other academic)
  • 24.
    Boustedt, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    McCartney, Robert
    Moström, Jan Erik
    Ratcliffe, Mark
    Sanders, Kate
    Zander, Carol
    Threshold Concepts in Computer Science: Do they exist and are they useful?2007In: SIGCSE Bulletin inroads, ISSN 0097-8418, Vol. 39, no 1, p. 504-508Article in journal (Refereed)
  • 25. Boustedt, Jonas
    et al.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.
    McCartney, Robert
    Sanders, Kate
    Thomas, Lynda
    Zander, Carol
    Students' perceptions of the differences between formal and informal learning2011In: Proc. 7th International Computing Education Research Workshop, New York: ACM Press , 2011, p. 61-68Conference paper (Refereed)
  • 26.
    Brink, Anna
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Det kreativa (i) rummet: En undersökning om digital teknik och bildundervisning2012Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Digital teknik utgör ett obligatoriskt inslag i svensk undervisning, såväl praktiskt som i rådande kursplaner. Följande uppsats behandlar hur digital teknik tillämpas i bildundervisningen på några grund- och gymnasieskolor, samt vad som påverkar tillämpningen. Vidare beskrivs även nårga lärares upplevda relation till anammandet av digital teknik i bildudnervisning.

  • 27.
    Cunningham, Una
    Stockholm University.
    Growing up with two languages2011Book (Other academic)
  • 28. Cunningham-Andersson, 1960, Una
    Growing up with two languages: a practical guide for the bilingual family2011 (ed. 3rd)Book (Other academic)
  • 29. Dyrvold, Anneli
    Läsa matematik eller matematisk läsning? 2017In: Dyslexi - aktuellt om läs- och skrivsvårigheter, Vol. 22, no 3, p. 18-23Article in journal (Other (popular science, discussion, etc.))
  • 30. Dyrvold, Anneli
    Which textual features are difficult when reading and solving mathematics tasks?2017In: Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1 – 5, 2017) / [ed] T. Dooley, & G. Gueudet, Dublin, 2017Conference paper (Refereed)
  • 31.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    On the Understanding of Object and Class2004Report (Other academic)
  • 32.
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Ways of Thinking and Practising in Introductory Programming2009Report (Other academic)
  • 33.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Berglund, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    What Does It Take to Learn 'Programming Thinking'?2005In: Proc. 1st International Computing Education Research Workshop, New York: ACM Press , 2005, p. 135-142Conference paper (Refereed)
  • 34.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.
    Laakso, Mikko-Jussi
    Lopez, Mike
    Sarkar, Amitrajit
    Relationship between text and action conceptions of programming: a phenomenographic and quantitative perspective2011In: Proc. 16th Conference on Innovation and Technology in Computer Science Education, New York: ACM Press , 2011, p. 33-37Conference paper (Refereed)
  • 35.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    McCartney, Robert
    Moström, Jan Erik
    Ratcliffe, Mark
    Sanders, Kate
    Zander, Carol
    Putting Threshold Concepts into Context in Computer Science Education2006In: SIGCSE Bulletin inroads, ISSN 0097-8418, Vol. 38, no 3, p. 103-107Article in journal (Refereed)
  • 36.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    McCartney, Robert
    Moström, Jan Erik
    Ratcliffe, Mark
    Zander, Carol
    Can Graduating Students Design Software Systems?2006In: SIGCSE Bulletin inroads, ISSN 0097-8418, Vol. 38, no 1, p. 403-407Article in journal (Refereed)
  • 37.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    McCartney, Robert
    Moström, Jan Erik
    Ratcliffe, Mark
    Zander, Carol
    Categorizing student software designs: Methods, results, and implications2006In: Computer Science Education, ISSN 0899-3408, E-ISSN 1744-5175, Vol. 16, p. 197-209Article in journal (Refereed)
  • 38.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    McCartney, Robert
    Moström, Jan Erik
    Ratcliffe, Mark
    Zander, Carol
    Comparing student software designs using semantic categorization2005In: Proc. 5th Finnish/Baltic Sea Conference on Computer Science Education: Koli Calling, Finland: Turku Centre for Computer Science , 2005, p. 57-64Conference paper (Other academic)
  • 39.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    McCartney, Robert
    Moström, Jan Erik
    Sanders, Kate
    Thomas, Lynda
    Zander, Carol
    From Limen to Lumen: Computing students in liminal spaces2007In: Proc. 3rd International Computing Education Research Workshop, New York: ACM Press , 2007, p. 123-132Conference paper (Refereed)
  • 40.
    Eckerdal, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Thuné, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Novice Java Programmers' Conceptions of "Object" and "Class", and Variation Theory2005In: SIGCSE Bulletin inroads, ISSN 0097-8418, Vol. 37, no 3, p. 89-93Article in journal (Refereed)
  • 41.
    Ericson, Lucas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Social and Economic Geography.
    Verkligheten som klassrum: Platsen som verktyg i geografiundervisningen2016Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Den här uppsatsen syftar till att undersöka hur platser kan användas för lärande av geografiska kunskaper i skolan. För att göra detta genomförs en litteraturstudie kring platser och platsbaserad undervisning. Utöver detta genomförs ett avsnitt om vad exkursioner och fältstudier har att tillföra diskussionen kring plats. Styrdokument från skolverket analyseras för att se hur de föreslår att vi arbetar med plats. Dessa delar sätts sedan i relation till fem observationer på olika platser i Uppsala. Observationerna analyseras sedan tillsammans med det som litteraturstudien har kommit fram till. Resultatet av den här undersökningen är att platser kan förstås huvudsakligen som något som skapar mening och platskänsla i ett samspel mellan människor, det byggda och den fysiska miljön. Platsbaserad undervisning blir framförallt exkursioner, fältstudier, sniffövningar, elevpresentationer, rundvandringar, guidningar och öppna frågor. Hur vi kan använda en plats illustreras av ett flödesschema. Avslutningsvis är att genom en mångfacetterad användning av platser kan dessa användas i undervisningen för lärande av geografiska kunskaper.

  • 42. Fincher, Sally
    et al.
    Petre, Marian
    Tenenberg, Josh
    Blaha, Ken
    Bouvier, Dennis
    Chen, Tzu-Yi
    Chinn, Donald
    Cooper, Stephen
    Eckerdal, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Johnson, Hubert
    McCartney, Robert
    Monge, Alvaro
    Moström, Jan Erik
    Powers, Kris
    Ratcliffe, Mark
    Robins, Anthony
    Sanders, Dean
    Schwartzman, Leslie
    Simon, Beth
    Stoker, Carol
    Elliott Tew, Allison
    VanDeGrift, Tammy
    A multi-national, multi-institutional study of student-generated software designs2004In: Proc. 4th Finnish/Baltic Sea Conference on Computer Science Education: Koli Calling, Finland: Helsinki University of Technology , 2004, p. 20-27Conference paper (Other academic)
  • 43.
    Forsberg, Andreas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Arts, Department of Musicology.
    Genusframställning i svenska skolsångböcker: En studie av Sjung Svenska Folk 1959-19892016Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Syftet med denna studie är att studera genusframställningen i skolsångböcker under tidsperioden 1959-1989. Genom textanalys av sångboksserien Sjung Svenska Folk ska skillnader mellan hur de båda könen framställs påvisas. I studien görs detta utifrån samhällets förväntningar på manliga och kvinnliga egenskaper, yrkesutövning samt maktförhållandet mellan könen. Skolsångböcker har historiskt sett haft en viktig betydelse i förmedlandet av värderingar och i formandet av framtidens samhällsmedborgare. Utifrån analys av sångtexter från fyra olika decennier kan en tydlig skillnad observeras i hur kön framställts. Analysen i studien utgår från tre olika analytiska teman; yttre egenskaper, yrkesutövning och sysslor, samt maktförhållande. Slutsatsen som kan göras utifrån genomförd studie är att Sjung svenska folks sångtexter tydligt är förmedlare av samhällets förväntningar på män och kvinnor, en tydlig genusframställning görs i Sjung svenska folk. Denna framställning medför en reproduktion av genus i form av förväntningar på ett visst köns yttre egenskaper, yrkesutövning och sysslor samt maktförhållandet gentemot det andra könet under respektive decennium. Dock har intressanta avvikelser iakttagits för hur genusframställning skett under de fyra decennierna. Denna avvikelse kan bland annat härledas till 70-talet och framåt.

  • 44.
    Forthomme Hazelius, Maria
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Elevkommunikationens betydelse i dagens bildsal: En studie av tre bildlärares uppfattningar och erfarenheter av elevers kommunikation/elevkommunikationen utifrån digital vs traditionell verktygsanvändning i bildarbeten2014Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Föreliggande undersökning fokuserar på bildlärare och deras uppfattningar och erfarenheter av elevkommunikation utifrån digitala och traditionella verktyg i bildarbeten. Undersökningens metod har varit samtalsintervju där det empiriska materialet är insamlat från tre bildlärare. Under bearbetning och analys har jag inspirerats av fenomenografin som ett analytiskt verktyg. Det framkommer av resultatet att elevkommunikationen utgör en viktig del både för process och produktion inom bildämnet, både för bilders kvalitet och gruppens positiva energi och sammanhållning. Resultatet visar även att när elever under bildarbeten använder traditionella verktyg, ger det en synligare process. Då det ger en dold process när elever använder digitala verktyg. Produkten som elever gör i bildarbeten uppfattas av lärarna vara djup när traditionella verktyg används och ytlig då elever använder digitala verktyg. Dessa resultat innebär att det ställer högre krav på bildlärarens yrkesroll inför kursplanens ökade fokus på användning av digitala verktyg och ett kommunikativt fokus i bildämnet.

  • 45.
    Gille, Johan
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Languages, Department of Modern Languages, Romance Languages.
    «¡Pero espérate!» Algunos aspectos de la resolución del desacuerdo en trabajos en grupo2012In: Actes du XVIIIe congrès des romanistes scandinaves/Actas del XVIII congreso de romanistas escandinavos / [ed] Eva Ahlstedt, Ken Benson, Elisabeth Bladh, Ingmar Söhrman, Ulla Åkerström, Göteborg, 2012, p. 265-281Conference paper (Refereed)
  • 46.
    Granberg, Albina
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Food, Nutrition and Dietetics. Högskolan Kristianstad, Forskningsmiljön Food and Meals in Everyday Life (MEAL).
    Brante, Göran
    University of Gothenburg.
    Olsson, Viktoria
    Högskolan Kristianstad, Forskningsmiljön Food and Meals in Everyday Life (MEAL).
    Mattsson Sydner, Ylva
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Food, Nutrition and Dietetics. Uppsala University.
    Learning how to cook in Home Economics Education: the role of recipes as learning tools2016In: Childhood in Everyday Life: abstract book, 2016, p. 63-Conference paper (Refereed)
    Abstract [en]

    Introduction

    The school subject Home Economics is a potential context for children to learn how to cook and to master artefacts in the cooking practice. Recipes, used as leaning tools, are part of the Swedish syllabus of Home Economics and an integral part of today’s cooking culture. Despite being a central artefact during cooking lessons, it is known that children have various difficulties using recipes.

    Aim

    The aim of this study is to investigate what kind of barriers that occur when children with mild intellectual disabilities (ID) use recipes in order to learn how to cook in Home Economics.

    Methods

    With an ethnographic inspired design, sixteen accompanying observations were used at lessons in Home Economics. The observations were carried out in kitchen classroom settings where teaching and learning about cooking took place. The field notes were thematically analyzed. 

    Result

    The findings reveal that there were many barriers in the children´s use of recipes. Foremost, attention was drawn to the complex set of knowledge needed to be able to use and understand a recipe in order to learn how to cook. The design and the purport of the recipe has to be comprehended, and in addition, it´s interpretation requires arithmetical knowledge. We therefore suggest that the knowledge needed to make use of a recipe can be conceptualized in the novel concept of recipe literacy.

    Conclusion

    Recipes turned out to be difficult for the children to use and this must be taken in consideration by the teachers. The concept of recipe literacy can be useable when discussing the use of recipes as learning tools in cooking in Home Economics.

     

  • 47.
    Grape, Sophie
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacobsson Svärd, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Students’ approaches to learning from other students’ oral presentations2013Conference paper (Other academic)
    Abstract [en]

    A phenomenographic study has been performed in order to investigate students’ approaches to learning from other students’ oral presentations in the context of a compulsory seminar on nuclear accidents in the third year of the nuclear engineering programme at Uppsala University.

  • 48.
    Grimbrandt, Filip
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Heuberger, Linn
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Educational Sciences, Department of Education.
    Att tänka fritt är stort men tänka rätt är större: En studie om månadssamtalet som ett redskap för medarbetarnas utveckling i det dagliga arbetet2015Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The monthly dialogue is a frequent discussion between employees and managers within an organization. In the conversation they discuss the employee's well being, results that have been achieved and future development plans. The purpose of this study was to examine, from a employees and managers perspective, how the monthly dialogue contributes to the employee's continued development and learning. Our purpose resulted in three questions: What characterizes the monthly dialogue, how do employees and managers view their individual tasks in the monthly dialogue and in which ways does the monthly dialogue contribute to developing employees in their daily work tasks. As a first step we reviewed previous research in performance appraisal, this was done in order to distinguish different perspective, significant aspects and past interesting problems around the phenomenon. In order to answer the questions we choose a qualitative method. We performed seven semi-structured telephone interviews with employees and managers from an employment agency. The material from the interviews were then analysed with a socio-cultural perspective in mind and with theories from Lave and Wenger and Säljö.

    We concluded that the monthly dialogue can be characterized as a social and communal activity. The dialogue will generate continuous feedback to the employee on their strengths and needs, which are made possible through the language, which is seen as one of the most essential components in the monthly dialogue. The dialogues are affected by the existing culture in the organization. The manager's role is to coach and guide the employees and therefore their primary mission is to get the employee to talk through involvement and support. The employee's task is to be communicative and take the leading role. There is a focus on learning and development and this is made possible if the employee takes responsibility to participate, be active and adapt to the existing culture. The employees themself believe that the dialogue contributes to a change in their approach and in handling different work tasks, for the better. One aspect that learning refers to is the knowledge and advices that managers contribute with and to the employees themselves that have actively participated and reflected to solutions. Learning in the monthly dialogue is made possible through social interaction between employees and managers and when experiences and knowledge are used and developed. 

  • 49.
    Grundström Lindqvist, Josefine
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Airey, John
    Understanding Physics Equations: Comparing the views of students and teachers2014Conference paper (Refereed)
    Abstract [en]

    Understanding a physics equation: Comparing the views of students and teachers

    Abstract

    As a discipline, physics is concerned with describing the world by constructing models, the end product of this modelling process often being an equation. Despite their importance in the representation of physics knowledge, physics equations have received surprisingly little attention in the literature. The work that has been done has tended to focus on the use of equations in problem solving (see Hsu, Brewe, Foster, & Harper, 2004 for an overview and Hegde & Meera, 2012 for a more recent example). One significant study is that of Sherin (2001) who examined students ability to construct equations. Very little work has examined what it means to understand a physics equation, the only work we could locate was that of Domert, 2007 and Hechter, 2010. Building on these two sources a study that examined how students understand an equationwas recently carried out (Airey, Grundström Lindqvist & Kung, in production Grundström Lindqvist & Airey 2013a 2013b). The result of that study was twelve questions that the authors suggest can be used by students orlecturers to develop the understanding of physics equations. These questions were generated by the answers that over 300 students in Sweden, USA and Australia gave to the question; How do you know when you understand a physics equation?

    This project builds upon this earlier study by investigating the use of the twelve questions with focus groups of students and by ascertaining the opinions of physics lecturers.

    References

    Airey, Grundström Lindqvist & Kung (in production) What does it mean to understand a physics Equation?

    Domert, D., Airey, J., Linder, C., & Kung, R. (2007). An exploration of university physics students' epistemological mindsets towards the understanding of physics equations. NorDiNa, Nordic Studies in Science Education(3), 15-28.

    Grundström Lindqvist, J., and Airey, J. (2013). "Förståelse av fysikekvationer: Vad säger studenter?"Konferens i universitetspedagogisk utveckling, Uppsala, 16 October. City: Uppsala Universitet.

    Grundström Lindqvist, J. (2013). "Vad innebär det att förstå en ekvation inom fysiken enligt studenter?"Uppsala Universitet Teknisk-naturvetenskapliga fakultetens Universitetspedagogiska Konferens, TUK 2013, 19 April. City: Uppsala Universitet.

    Hechter, R. P. (2010). What does it understand the equation' really mean? Physics Education, 45(132).

    Hegde, B. Meera, B. N. (2012). How do they solve it? An insight into the learner's approach to the mechanism of physics problem solving. Phys. Rev. ST Phys. Educ. Res. 8, 010109

    Hsu, L., Brewe, E., Foster, T. M., & Harper, K. A. (2004). Resource Letter RPS-1: Research in problem solving. American Journal of Physics, 72(9), 1147-1156.

    Sherin, B. L. (2001). How students understand physics equations. Cognitive Instruction, 19, 479-541.

     

  • 50.
    Grundström Lindqvist, Josefine
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Airey, John
    What does it mean to understand a physics equation?2014Conference paper (Refereed)
    Abstract [en]

    Despite their importance in the representation of physics knowledge, physics equations have received surprisingly little attention in the literature. Very little work has examined what it means to understand a physics equation, the only work we could locate was that of Domert, 2007 and Hechter, 2010.

    Building on these two sources a study that examined how university students understand a physics equation was recently carried out (Airey, Grundström Lindqvist & Kung, in production). The result of that study was a number of questions that the authors suggest can be used by students or lecturers to develop the understanding of physics equations. These questions were generated by the answers that over a hundred students gave to the question How do you know when you understand a physics equation? In this poster we present a work in progress follow up where we will compare lecturers' opinions with our earlier findings.

123 1 - 50 of 113
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf