uu.seUppsala University Publications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aldskogius, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Microglia in neuroregeneration2001In: Microscopy research and technique (Print), ISSN 1059-910X, E-ISSN 1097-0029, Vol. 54, no 1, p. 40-46Article in journal (Refereed)
    Abstract [en]

    Microglia has the potential to produce and release a range of factors that directly and/or indirectly promote regeneration in the injured nervous system. The overwhelming evidence indicates, however, that this potential is generally not expressed in vivo. Activated microglia may enhance neuronal degeneration following axotomy, thereby counteracting functional recovery. Microglia does not seem to contribute significantly to axonal outgrowth after peripheral nerve injury, since this process proceeds uneventful even if perineuronal microglia is eliminated. The phagocytic phenotype of microglia is highly suppressed during Wallerian degeneration in the central nervous system. Therefore, microglia is incapable of rapid and efficient removal of myelin debris and its putative growth inhibitory components. In this way, microglia may contribute to regeneration failure in the central nervous system. Structural and temporal correlations are compatible with participation by perineuronal microglia in axotomy-induced shedding of presynaptic terminals, but direct evidence for such participation is lacking. Currently, the most promising case for a promoting effect on neural repair by activated microglia appears to be as a mediator of collateral sprouting, at least in certain brain areas. However, final proof for a critical role of microglia in these instances is still lacking. Results from in vitro studies demonstrate that microglia can develop a regeneration supportive phenotype. Altering the microglial involvement following neural injury from a typically passive or even counterproductive state and into a condition where these cells are actively supporting regeneration and plasticity is, therefore, an exciting challenge and probably a realistic goal.

  • 2.
    Andersson, C
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Roomans, GM
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Determination of chloride efflux by X-ray microanalysis versus MQAE-fluorescence2002In: Microscopy research and technique (Print), ISSN 1059-910X, E-ISSN 1097-0029, Vol. 59, no 6, p. 531-355Article in journal (Refereed)
    Abstract [en]

    The importance of chloride channels for the cell is demonstrated by a number of serious human diseases that are due to mutations in chloride channels. The most well-known of these diseases is cystic fibrosis. Investigations into the mechanisms of the disease and possible treatments require the study of chloride fluxes at the level of individual cells. The present study compares two methods for studies of chloride transport: X-ray microanalysis and MQAE fluorescence with image analysis. As an experimental system, the cAMP-activated chloride channel in cultured respiratory epithelial cells was chosen. Both methods showed that stimulation with the cAMP-elevating agents forskolin and IBMX decreased the chloride content of the cells by about 20-27%. Inducing a driving force for chloride by replacing extracellular chloride by nitrate resulted in a chloride efflux that was significantly increased in the presence of forskolin and IBMX. This study shows that X-ray microanalysis and MQAE fluorescence are adequate and comparable methods for measuring cAMP-dependent chloride transport in individual cells.

  • 3.
    Ferraz, Natalia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Hong, Jaan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Time sequence of blood activation by nanoporous alumina: Studies on platelets and complement system2010In: Microscopy research and technique (Print), ISSN 1059-910X, E-ISSN 1097-0029, Vol. 73, no 12, p. 1101-1109Article in journal (Refereed)
    Abstract [en]

    In the present work the time sequence of blood activation by alumina membranes with different porosities (20 and 200 nm in diameter) was studied. The membranes were incubated with whole blood from 2 min to 4 h. Platelet adhesion and activation in addition to complement activation were monitored at different time points. Evaluation of platelet adhesion and activation was done by determining the change in platelet number and the levels of thrombospondin-1 in the fluid phase. Scanning electron microscopy studies were done to further evaluate platelet adhesion and morphology. Immunocytochemical staining was used to evaluate the presence of CD41 and CD62P antigens on the material surface. Complement activation was monitored by measuring C3a and sC5b-9 in plasma samples by means of enzyme immunoassays. Both alumina membranes displayed similar complement activation time profiles, with levels of C3a and sC5b-9 increasing with incubation time. A statistically significant difference between the membranes was found after 60 min of incubation. Platelet activation characteristics and time profile were different between the two membranes. Platelet adhesion increased over time for the 20 nm surface, while the clusters of microparticles on the 200 nm surface did not appreciably change during the course of the experiment. The release of thrombospondin-1 increased with time for both membranes, however much later for the 200 nm alumina (240 min) as compared to the 20 nm membrane (60 min). The surface topography of the alumina most probably influence protein transition rate, which in turn affects material-platelet activation kinetics.

  • 4. Forslind, Bo
    et al.
    Lindberg, Magnus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Roomans, Godfried M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Pallon, Jan
    Werner-Linde, Ylva
    Aspects on the physiology of human skin: studies using particle probe analysis1997In: Microscopy research and technique (Print), ISSN 1059-910X, E-ISSN 1097-0029, Vol. 38, no 4, p. 373-386Article in journal (Refereed)
    Abstract [en]

    The cellular part of the skin, the epidermis, is a very thin structure, approximately 120 microns thick, a fact which has hindered the exploration of the physiology of the epidermis in normal and pathological conditions. An additional complication is the fact that the epidermis contains layers of cells at different stages of differentiation. Therefore, conventional physiological capillary probes cannot, with any satisfactory precision, be located within a specified cell of a specified layer of the skin in vivo. Hence, alternative ways for the exploration of skin physiology have been sought for. In the past, analysis of the elemental content of skin was done was done as bulk measurements, and surprisingly wide ranges of elemental content were recorded. The width of these ranges was most certainly due to the sampling methods used rather than the sensitivity of the chosen method of analysis. Also, these older measurements did not discriminate between the different strata, and therefore the information provided little if any substance for a functional analysis of processes involved in normal and pathological differentiation of the epidermis. Particle probes, however, have been able to overcome such methodological problems. Over a period of 15 years we have studied normal human skin, normal-looking, paralesional skin from psoriatics, and skin from persons suffering from atopic dermatitis using PIXE analysis. In recent years, trace elements have been shown to work as secondary messengers or regulatory substances. As an example, calcium (Ca2+) has proven to be a very important signalling substance in a great variety of cellular systems. Studies with the transmission electron microscope (TEM) as well as histochemical methods have allowed an understanding of the role of Ca2+ in the differentiation process of the epidermis. Ca2+ has also been shown to play an important role in apoptosis (programmed cell death), which is currently a hot subject for the obvious reason that the final differentiation step between the stratum granulosum level and the stratum corneum represents a particular aspect of programmed cell death. The importance of the balance between calcium and zinc in apoptosis has been clearly demonstrated in a number of cellular systems, but we have still to clarify the validity of topical treatment with Zn ointments in different skin conditions. Substantial iron (Fe) losses via psoriatic lesions were demonstrated more than two decades ago, and these data were given new meaning when we found that a more discrete loss occurs in clinically normal-looking psoriatic skin. Obviously, such findings stress the importance of understanding the relation between the elemental content and normal and abnormal physiology. The ultimate goal of particle probe studies is to provide an understanding of the formation of a mature stratum corneum with a functional barrier reflected in physiological/biochemical mechanisms behind the properties of changed skin in patients afflicted with skin disorders of genetic or constitutional origin. This paper aims to give an overview of the state of the art in skin physiology made possible through the use of particle probes.

  • 5.
    Nilsson, Harriet
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Dragomir, Anca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Ahlander, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Ljungkvist, Marianne
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Roomans, Godfried M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    A modified technique for the impregnation of lanthanum tracer to study the integrity of tight junctions on cells grown on a permeable substrate2006In: Microscopy research and technique (Print), ISSN 1059-910X, E-ISSN 1097-0029, Vol. 69, no 10, p. 776-783Article in journal (Refereed)
    Abstract [en]

    Ionic lanthanum is commonly used to trace permeability pathways across epithelia and endothelia in biological electron microscopy. A method for obtaining a uniformly dense precipitate of lanthanum is described. The method, which is a modification of the technique described by Shaklai and Tavassoli (1977) was suitable for fixation of cell cultures grown on permeable filter inserts and was successfully applied to study opening of tight junctions by hypertonic solutions in the airway epithelial cell line 16HBE14o(-). The preparation method formed the basis for a semi-quantitative morphological determination in which the tight junctions were subdivided as "intact," "weakened," and "open." By using this modified technique, it could be demonstrated that opening of tight junctions in airway epithelial cells increased, with increasing osmolarity with electrolytes having a stronger effect than nonelectrolytes. A significant linear relationship was found between the osmolarity of the medium and the open state of the tight junctions (as determined by the semi-quantitative morphological technique) or the transepithelial electrical resistance.

  • 6.
    Sandberg, Tomas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Carlsson, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Karlsson Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Surface Biotechnology.
    Mucin coatings suppress neutrophil adhesion to a polymeric model biomaterial2007In: Microscopy research and technique (Print), ISSN 1059-910X, E-ISSN 1097-0029, Vol. 70, no 10, p. 864-868Article in journal (Refereed)
    Abstract [en]

    Following our recent study on the fractionation, characterization, and model adsorption of mucins derived from bovine salivary glands (BSM), porcine stomach scrapings (PGM), and human whole saliva (MG1), we here present a microscopic evaluation of the interactions between mucin-coated substrates and human neutrophils. Our results show that surface-coating with BSM, PGM, and MG1 can be effectively used to suppress the adhesion of neutrophils to a polymeric model biomaterial (Thermanox). Neutrophil morphologies found on Thermanox substrates coated with mucins resemble those observed for nonactivated neutrophils found in circulation. Notably, low neutrophil adhesion can be obtained at a significantly lower coating concentration (0.125 mg/mL) for the compositionally complex MG1 mucin than for the relatively pure BSM and PGM mucins (1 mg/mL). Furthermore, since coating at a low BSM and PGM concentration (0.25 mg/mL) results in higher cell counts and more spread cells than in the high-concentration case, we suggest that dense mucin surface packing is critical for good coating performance. In conclusion, the present study demonstrates how mucins from three different sources, of different compositional and structural status, efficiently can be used to suppress neutrophil adhesion and activation. This finding makes them potent candidates for use as biomaterial coatings.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf