uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Karunaratne, Thashmee
    et al.
    Bostrom, Henrik
    Norinder, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Comparative analysis of the use of chemoinformatics-based and substructure-based descriptors for quantitative structure-activity relationship (QSAR) modeling2013In: Intelligent Data Analysis, ISSN 1088-467X, E-ISSN 1571-4128, Vol. 17, no 2, p. 327-341Article in journal (Refereed)
    Abstract [en]

    Quantitative structure-activity relationship (QSAR) models have gained popularity in the pharmaceutical industry due to their potential to substantially decrease drug development costs by reducing expensive laboratory and clinical tests. QSAR modeling consists of two fundamental steps, namely, descriptor discovery and model building. Descriptor discovery methods are either based on chemical domain knowledge or purely data-driven. The former, chemoinformatics-based, and the latter, substructures-based, methods for QSAR modeling, have been developed quite independently. As a consequence, evaluations involving both types of descriptor discovery method are rarely seen. In this study, a comparative analysis of chemoinformatics-based and substructure-based approaches is presented. Two chemoinformatics-based approaches; ECFI and SELMA, are compared to five approaches for substructure discovery; CP, graphSig, MFI, MoFa and SUBDUE, using 18 QSAR datasets. The empirical investigation shows that one of the chemo-informatics-based approaches, ECFI, results in significantly more accurate models compared to all other methods, when used on their own. Results from combining descriptor sets are also presented, showing that the addition of ECFI descriptors to any other descriptor set leads to improved predictive performance for that set, while the use of ECFI descriptors in many cases also can be improved by adding descriptors generated by the other methods.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf