uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Biasson, A
    et al.
    Dey, Subhrakanti
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
    Zorzi, M
    A decentralized optimization framework for energy harvesting devices2018In: IEEE Transactions on Mobile Computing, ISSN 1536-1233, E-ISSN 1558-0660, Vol. 17, no 11, p. 2483-2496Article in journal (Refereed)
    Abstract [en]

    Designing decentralized policies for wireless communication networks is a crucial problem, which has only been partially solved in the literature so far. In this paper, we propose a Decentralized Markov Decision Process (Dec-MDP) framework to analyze a wireless sensor network with multiple users which access a common wireless channel. We consider devices with energy harvesting capabilities, that aim at balancing the energy arrivals with the data departures and with the probability of colliding with other nodes. Over time, an access point triggers a SYNC slot, wherein it recomputes the optimal transmission parameters of the whole network, and distributes this information. Every node receives its own policy, which specifies how it should access the channel in the future, and, thereafter, proceeds in a fully decentralized fashion, with no interactions with other entities in the network. We propose a multi-layer Markov model, where an external MDP manages the jumps between SYNC slots, and an internal Dec-MDP computes the optimal policy in the short term. We numerically show that, because of the harvesting, stationary policies are suboptimal in energy harvesting scenarios, and the optimal trade-off lies between an orthogonal and a random access system.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf