uu.seUppsala University Publications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Place, Joachim
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.
    Malehmir, Alireza
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.
    Högdahl, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Mineralogy Petrology and Tectonics.
    Juhlin, Christopher
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.
    Nilsson, Katarina Persson
    Geol Survey Sweden, Uppsala, Sweden..
    Seismic characterization of the Grangesberg iron deposit and its mining-induced structures, central Sweden2015In: Interpretation, ISSN 2324-8858, E-ISSN 2324-8866, Vol. 3, no 3, p. SY41-SY56Article in journal (Refereed)
    Abstract [en]

    We have conducted a reflection seismic investigation over the apatite-iron deposit at Grangesberg in central Sweden. At the time of closure in 1989, the mine was operated using the sublevel caving method down to approximately a 650-m depth. This mining technique caused subsidence and generated a network of faults that propagated from excavated zones at depth up to the surface. The Grangesberg deposit is the largest iron oxide mineralization in central Sweden and is planned to be mined again in the coming years. It is therefore imperative to have a better understanding of the ore geometry and the fault network. A reconnaissance survey consisting of two seismic lines with a total length of 3.5 km was carried out to address these issues. The profiles intersect the Grangesberg deposit and open pit, as well as the major mining-induced fracture zone present in this area. A drop-hammer source mounted on a hydraulic truck was used to generate seismic signals; cabled and wireless receivers were used for the data recording. Preprocessing of the data first required the cable-and wirelessrecorded data sets to be merged before stacking all data available at each shot point. Source gathers exhibit reflections from the near surface, probably generated at lithological boundaries hosting the iron mineralization and other geologic structures. Deeper reflections were also observed. The metavolcanic assemblage hosting the mineralization and the anthropogenic fault network were depicted in the stacked sections, bringing in new elements to refine the geologic model of the area. This study also illustrated the ability of reflection seismic methods to delineate mining-induced structures in hard-rock environments. Low-velocity anomalies from the open pit and adjacent structures were depicted in tomographic sections along the two lines, which showed good agreement with known geologic features and the reflection seismic results.

  • 2.
    Shahpasandzadeh, Majid
    et al.
    Grad Univ Adv Technol, Dept Earth Sci, Kerman, Iran.
    Koyi, Hemin
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Mineralogy Petrology and Tectonics.
    Nilfouroushan, Faramarz
    Univ Gavle, Dept Ind Dev IT & Land Management, Gavle, Sweden.
    The significance of switch in convergence direction in the Alborz Mountains, northern Iran: Insights from scaled analogue modeling2017In: Interpretation, ISSN 2324-8858, E-ISSN 2324-8866, Vol. 5, no 1, p. SD81-SD98Article in journal (Refereed)
    Abstract [en]

    The switch in direction of convergence between Central Iran and the Eurasian Plate is believed to have a significant impact on the structural style in the Alborz Mountains, in the north of Iran. To understand the deformation pattern and investigate the influence of the South Caspian Basin kinematics since the middle Miocene on the structural styles and active tectonics of the Alborz Mountains, a series of scaled analogue models were prepared, in which passively layered loose sand simulating the sedimentary units were subjected to orthogonal and subsequently oblique shortening by a rigid indenter. Model results indicate that during the shortening, an arcuate-shaped foreland-vergent imbricate stack forms in front of the indenter. The orthogonal shortening is characterized by a prevailing right-lateral and left-lateral oblique-slip motion in the east and west of the model, respectively. This shift in kinematics contradicts the proposed preneotectonic (orthogonal) model of the Alborz. However, during oblique shortening, model results show that deformation is mainly accommodated by leftlateral transpression within the sand wedge and internal deformation. Oblique shortening is consistently accommodated by continued left-lateral motion on the west-northwest-trending oblique thrusts, whereas the east-westtrending thrusts and the preexisting east-northeast-trending right-lateral oblique thrusts reactivate as left-lateral oblique faults. Precise monitoring of the model surface also illustrates partitioning of shortening into the forelandvergent left-lateral thrusting in the south and hinterland-vergent back thrusting in the north. These model results are generally consistent with field observations and GPS data of structure and kinematics of the Alborz Mountains.

  • 3.
    Van Dam, Remke L.
    et al.
    Queensland Univ Technol, Fac Sci & Engn, Brisbane, Qld 4001, Australia.;Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA..
    Storms, Joep E. A.
    Delft Univ Technol, Dept Civil Engn & Geosci, Delft, Netherlands..
    Schuster, Gerard T.
    King Abdullah Univ Sci & Technol, Ctr Subsurface Imaging & Fluid Modeling, Thuwal, Saudi Arabia..
    Malehmir, Alireza
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.
    Kenter, Jeroen A. M.
    Conoco Phillips, Houston, TX USA..
    Forte, Emanuele
    Univ Trieste, Dept Math & Geosci, Trieste, Italy..
    Introduction to special section: Geophysical imaging and interpretation of outcrops2015In: Interpretation, ISSN 2324-8858, E-ISSN 2324-8866, Vol. 3, no 3, p. SYI-SYIIArticle in journal (Other academic)
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf