uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Almeida, Rafael M.
    et al.
    Barros, Nathan
    Cole, Jonathan J.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Roland, Fabio
    Correspondence: Emissions from Amazonian dams2013Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 3, nr 12, s. 1005-1005Artikkel i tidsskrift (Annet vitenskapelig)
  • 2. Almeida, Rafael M.
    et al.
    Barros, Nathan
    Cole, Jonathan J.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Roland, Fábio
    Emissions from Amazonian dams2013Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 3, nr 12, s. 1005-1005Artikkel i tidsskrift (Fagfellevurdert)
  • 3.
    Blicharska, Malgorzata
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Naturresurser och hållbar utveckling. Swedish Biodiversity Centre.
    Smithers, Richard J.
    Kuchler, Magdalena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Naturresurser och hållbar utveckling.
    Agrawal, Ganesh K.
    Gutiérrez, José M.
    Hassanali, Ahmed
    Huq, Saleemul
    Koller, Silvia H.
    Marjit, Sugata
    Mshinda, Hassan M.
    Masjuki, Hj Hassan
    Solomons, Noel W.
    Van Staden, Johannes
    Mikusinski, Grzegorz
    School for Forest Management, Swedish University of Agricultural Sciences.
    Steps to overcome the North-South divide in research relevant to climate-change policy and practice2017Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 7, s. 21-27Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A global North-South divide in research, and its negative consequences, has been highlighted in various scientific disciplines. Northern domination of science relevant to climate change policy and practice, and limited research led by Southern researchers in Southern countries, may hinder further development and implementation of global climate change agreements and nationally appropriate actions. Despite efforts to address the North-South divide, progress has been slow. In this Perspective, we illustrate the extent of the divide, review underlying issues and analyse their consequences for climate change policy development and implementation. We propose a set of practical steps in both Northern and Southern countries that a wide range of actors should take at global, regional and national scales to span the North-South divide, with examples of some actions already being implemented.

  • 4.
    Gallego-Sala, Angela V.
    et al.
    Geography Department, University of Exeter, Exeter, UK.
    Charman, Dan J.
    Geography Department, University of Exeter, Exeter, UK.
    Brewer, Simon
    Page, Susan E.
    Prentice, I. Colin
    Friedlingstein, Pierre
    Moreton, Steve
    Amesbury, Matthew J.
    Beilman, David W.
    Björck, Svante
    Blyakharchuk, Tatiana
    Bochicchio, Christopher
    Booth, Robert K.
    Bunbury, Joan
    Camill, Philip
    Carless, Donna
    Chimner, Rodney A.
    Clifford, Michael
    Cressey, Elizabeth
    Courtney Mustaphi, Colin
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Historisk-filosofiska fakulteten, Institutionen för arkeologi och antik historia, Arkeologi. Environment Department, University of York, York, UK.
    De Vleeschouwer, François
    de Jong, Rixt
    Fialkiewicz-Koziel, Barbara
    Finkelstein, Sarah A.
    Garneau, Michelle
    Githumbi, Esther
    Hribjlan, John
    Holmquist, James
    Hughes, Paul D. M.
    Jones, Chris
    Jones, Miriam C.
    Karofeld, Edgar
    Klein, Eric S.
    Kokfelt, Ulla
    Korhola, Atte
    Lacourse, Terri
    Le Roux, Gael
    Lamentowicz, Mariusz
    Large, David
    Lavoie, Martin
    Loisel, Julie
    Mackay, Helen
    MacDonald, Glen M.
    Makila, Markku
    Magnan, Gabriel
    Marchant, Robert
    Marcisz, Katarzyna
    Martínez Cortizas, Antonio
    Massa, Charly
    Mathijssen, Paul
    Mauquoy, Dmitri
    Mighall, Timothy
    Mitchell, Fraser J. G.
    Moss, Patrick
    Nichols, Jonathan
    Oksanen, Pirita O.
    Orme, Lisa
    Packalen, Maara S.
    Robinson, Stephen
    Roland, Thomas P.
    Sanderson, Nicole K.
    Sannel, A. Britta K.
    Silva-Sánchez, Noemí
    Steinberg, Natascha
    Swindles, Graeme T.
    Turner, T. Edward
    Uglow, Joanna
    Väliranta, Minna
    van Bellen, Simon
    van der Linden, Marjolein
    van Geel, Bas
    Wang, Guoping
    Yu, Zicheng
    Zaragoza-Castells, Joana
    Zhao, Yan
    Institute of Geographical Science and Natural Resources, Chinese Academy of Science, Beijing, China.
    Latitudinal limits to the predicted increase of the peatland carbon sink with warming2018Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 8, nr 10, s. 907-913Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around ad 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.

  • 5. Hemer, Mark A.
    et al.
    Fan, Yalin
    Mori, Nobuhito
    Semedo, Alvaro
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Luft-, vatten och landskapslära.
    Wang, Xiaolan L.
    Projected changes in wave climate from a multi-model ensemble2013Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 3, nr 5, s. 471-476Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Future changes in wind-wave climate have broad implications for the operation and design of coastal, near-and off-shore industries and ecosystems, and may further exacerbate the anticipated vulnerabilities of coastal regions to projected sea-level rise(1,2). However, wind waves have received little attention in global assessments of projected future climate change. We present results from the first community-derived multi-model ensemble of wave-climate projections. We find an agreed projected decrease in annual mean significant wave height (H-S) over 25.8% of the global ocean area. The area of projected decrease is greater during boreal winter (January-March, mean; 38.5% of the global ocean area) than austral winter (July-September, mean; 8.4%). A projected increase in annual mean H-S is found over 7.1% of the global ocean, predominantly in the Southern Ocean, which is greater during austral winter (July-September; 8.8%). Increased Southern Ocean wave activity influences a larger proportion of the global ocean as swell propagates northwards into the other ocean basins, observed as an increase in annual mean wave period (T-M) over 30.2% of the global ocean and associated rotation of the annual mean wave direction (theta(M)). The multi-model ensemble is too limited to systematically sample total uncertainty associated with wave-climate projections. However, variance of wave-climate projections associated with study methodology dominates other sources of uncertainty (for example, climate scenario and model uncertainties).

  • 6.
    Huss, Matthias
    et al.
    Swiss Fed Inst Technol, Lab Hydraul Hydrol & Glaciol VAW, Zurich, Switzerland.;Univ Fribourg, Dept Geosci, Fribourg, Switzerland..
    Hock, Regine
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Luft-, vatten och landskapslära. Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA.
    Global-scale hydrological response to future glacier mass loss2018Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 8, nr 2, s. 135-140Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources(1-4), but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce(5,6). Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum ('peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  • 7.
    Machguth, Horst
    et al.
    Department of Geography, University of Zurich.
    MacFerrin, Michael
    Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder.
    van As, Dirk
    Geological Survey of Denmark and Greenland (GEUS).
    Box, Jason E.
    Geological Survey of Denmark and Greenland (GEUS), København, Denmark.
    Charalampidis, Charalampos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Luft-, vatten och landskapslära. Geological Survey of Denmark and Greenland (GEUS).
    Colgan, William
    Department of Earth and Space Science and Engineering, York University.
    Fausto, Robert S.
    Geological Survey of Denmark and Greenland (GEUS).
    Meijer, Harro A. J.
    Univ Groningen, Energy & Sustainabil Res Inst Groningen, Ctr Isotope Res CIO, NL-9747 AG Groningen, Netherlands.
    Mosley-Thompson, Ellen
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH 43210 USA.; Ohio State Univ, Dept Geog, Columbus, OH 43210 USA.
    van de Wal, Roderik S. W.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, NL-3584 CC Utrecht, Netherlands.
    Greenland meltwater storage in firn limited by near-surface ice formation2016Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 6, nr 4, s. 390-393Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Approximately half of Greenland's current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland's firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012, revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than similar to 1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.

  • 8. Marotta, H.
    et al.
    Pinho, L.
    Gudasz, Cristian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Bastviken, D.
    Tranvik, Lars J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Enrich-Prast, A.
    Greenhouse gas production in low-latitude lake sediments responds strongly to warming2014Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 4, nr 6, s. 467-470Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Inland water sediments receive large quantities of terrestrial organic matter(1-5) and are globally important sites for organic carbon preservation(5,6). Sediment organic matter mineralization is positively related to temperature across a wide range of high-latitude ecosystems(6-10), but the situation in the tropics remains unclear. Here we assessed temperature effects on the biological production of CO2 and CH4 in anaerobic sediments of tropical lakes in the Amazon and boreal lakes in Sweden. On the basis of conservative regional warming projections until 2100 (ref. 11), we estimate that sediment CO2 and CH4 production will increase 9-61% above present rates. Combining the CO2 and CH4 as CO2 equivalents (CO(2)eq; ref. 11), the predicted increase is 2.4-4.5 times higher in tropical than boreal sediments. Although the estimated lake area in low latitudes is 3.2 times smaller than that of the boreal zone, we estimate that the increase in gas production from tropical lake sediments would be on average 2.4 times higher for CO2 and 2.8 times higher for CH4. The exponential temperature response of organic matter mineralization, coupled with higher increases in the proportion of CH4 relative to CO2 on warming, suggests that the production of greenhouse gases in tropical sediments will increase substantially. This represents a potential large-scale positive feedback to climate change.

  • 9.
    Sharma, Sapna
    et al.
    York Univ, Dept Biol, Toronto, ON, Canada.
    Blagrave, Kevin
    York Univ, Dept Biol, Toronto, ON, Canada.
    Magnuson, John J.
    Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA.
    O'Reilly, Catherine M.
    Illinois State Univ, Dept Geog Geol & Environm, Normal, IL 61761 USA.
    Oliver, Samantha
    US Geol Survey, Middleton, WI USA.
    Batt, Ryan D.
    Rutgers State Univ, New Brunswick, NJ USA.
    Magee, Madeline R.
    Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA;Wisconsin Dept Nat Resources, Madison, WI USA.
    Straile, Dietmar
    Univ Konstanz, Limnol Inst, Constance, Germany.
    Weyhenmeyer, Gesa A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Winslow, Luke
    Rensselaer Polytech Inst, Dept Biol Sci, Troy, NY USA.
    Woolway, R. Iestyn
    Univ Reading, Dept Meteorol, Reading, Berks, England.
    Widespread loss of lake ice around the Northern Hemisphere in a warming world2019Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 9, nr 3, s. 227-231Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ice provides a range of ecosystem services-including fish harvest(1), cultural traditions(2), transportation(3), recreation(4) and regulation of the hydrological cycle(5)-to more than half of the world's 117 million lakes. One of the earliest observed impacts of climatic warming has been the loss of freshwater ice(6), with corresponding climatic and ecological consequences(7). However, while trends in ice cover phenology have been widely documented(2,6,8,9), a comprehensive large-scale assessment of lake ice loss is absent. Here, using observations from 513 lakes around the Northern Hemisphere, we identify lakes vulnerable to ice-free winters. Our analyses reveal the importance of air temperature, lake depth, elevation and shoreline complexity in governing ice cover. We estimate that 14,800 lakes currently experience intermittent winter ice cover, increasing to 35,300 and 230,400 at 2 and 8 degrees C, respectively, and impacting up to 394 and 656 million people. Our study illustrates that an extensive loss of lake ice will occur within the next generation, stressing the importance of climate mitigation strategies to preserve ecosystem structure and function, as well as local winter cultural heritage.

  • 10.
    Walch, Colin
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för freds- och konfliktforskning.
    Expertise and policy-making in disaster risk reduction2015Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 5, nr 8, s. 706-707Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    The third UN World Conference on Disaster Risk Reduction ended with an agreement lacking ambition. The conference showed that better communication between the scientific community and decision-makers is needed to develop informed frameworks.

1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf