uu.seUppsala University Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Issac Niwas, Swamidoss
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Kårsnäs, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Uhlmann, Virginie
    Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts MA, USA and Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
    Ponnusamy, Palanisamy
    Dept. of Electronics and Communication Engineering (ECE), National Institute of Technology (NIT), Tiruchirappalli, India.
    Kampf, Caroline
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology, Molecular and Morphological Pathology.
    Simonsson, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Wählby, Carolina
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Science for Life Laboratory, SciLifeLab. Broad Institute of Harvard and Massachusetts Institute Technology (MIT), Cambridge, Massachusetts, MA, USA, .
    Strand, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Automated classification of immunostaining patterns in breast tissue from the Human Protein Atlas2013In: Journal of Pathology Informatics, ISSN 2229-5089, E-ISSN 2153-3539, Vol. 4, no 14Article in journal (Refereed)
    Abstract [en]

    Background:

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/). It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples.

    Materials and Methods:

    The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM)-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM) and linear discriminant analysis (LDA) classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue.

    Results:

    We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert.

    Conclusions:

    Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many applications, ranging from antibody quality control to tumor grading.

  • 2.
    Kårsnäs, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Dahl, Anders L.
    Technical University of Denmark, Department of Informatics and Mathematical Modelling.
    Larsen, Rasmus
    Technical University of Denmark, Department of Informatics and Mathematical Modelling.
    Learning histopathological patterns2012In: Journal of Pathology Informatics, ISSN 2229-5089, E-ISSN 2153-3539, Vol. 2, p. 12-Article in journal (Refereed)
    Abstract [en]

    Aims: The aim was to demonstrate a method for automated image analysis of immunohistochemically stained tissue samples for extracting features that correlate with patient disease. We address the problem of quantifying tumor tissue and segmenting and counting cell nuclei. Materials and Methods: Our method utilizes a flexible segmentation method based on sparse coding trained from representative image samples. Nuclei counting is based on a nucleus model that takes size, shape, and nucleus probability into account. Nuclei clustering and overlays are resolved using a gray-weighted distance transform. We obtain a probability measure for pixels belonging to a nucleus from our segmentation procedure. Experiments are carried out on two sets of immunohistochemically stained images - one set based on the estrogen receptor (ER) and the other on antigen KI-67. For the nuclei separation we have selected 207 ER image samples from 58 tissue micro array-cores corresponding to 58 patients and 136 KI-67 image samples also from 58 cores. The images are hand-annotated by marking the center position of each nucleus. For the ER data we have a total of 1006 nuclei and for the KI-67 we have 796 nuclei. Segmentation performance was evaluated in terms of missing nuclei, falsely detected nuclei, and multiple detections. The proposed method is compared to state-of-the-art Bayesian classification. Statistical analysis used: The performance of the proposed method and a state-of-the-art algorithm including variations thereof is compared using the Wilcoxon rank sum test. Results: For both the ER experiment and the KI-67 experiment the proposed method exhibits lower error rates than the state-of-the-art method. Total error rates were 4.8 % and 7.7 % in the two experiments, corresponding to an average of 0.23 and 0.45 errors per image, respectively. The Wilcoxon rank sum tests show statistically significant improvements over the state-of-the-art method. Conclusions: We have demonstrated a method and obtained good performance compared to state-of-the-art nuclei separation. The segmentation procedure is simple, highly flexible, and we demonstrate how it, in addition to the nuclei separation, can perform precise segmentation of cancerous tissue. The complexity of the segmentation procedure is linear in the image size and the nuclei separation is linear in the number of nuclei. Additionally the method can be parallelized to obtain high-speed computations.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf