uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
123 1 - 50 av 111
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aikio, A. T.
    et al.
    Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Vanhamaeki, H.
    Kyushu Univ, Int Ctr Space Weather Sci & Educ, Fukuoka, Japan;Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Workayehu, A. B.
    Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Virtanen, I. I.
    Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Kauristie, K.
    Finnish Meteorol Inst, Helsinki, Finland.
    Juusola, L.
    Finnish Meteorol Inst, Helsinki, Finland.
    Buchert, Stephan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Knudsen, D.
    Univ Calgary, Dept Phys & Astron, Calgary, AB, Canada.
    Swarm Satellite and EISCAT Radar Observations of a Plasma Flow Channel in the Auroral Oval Near Magnetic Midnight2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 6, s. 5140-5158Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present Swarm satellite and EISCAT radar observations of electrodynamical parameters in the midnight sector at high latitudes. The most striking feature is a plasma flow channel located equatorward of the polar cap boundary within the dawn convection cell. The flow channel is 1.5 degrees wide in latitude and contains southward electric field of 150 mV/m, corresponding to eastward plasma velocities of 3,300 m/s in the F-region ionosphere. The theoretically computed ion temperature enhancement produced by the observed ion velocity is in accordance with the measured one by the EISCAT radar. The total width of the auroral oval is about 10 degrees in latitude. While the poleward part is electric field dominant with low conductivity and the flow channel, the equatorward part is conductivity dominant with at least five auroral arcs. The main part of the westward electrojet flows in the conductivity dominant part, but it extends to the electric field dominant part. According to Kamide and Kokubun (1996), the whole midnight sector westward electrojet is expected to be conductivity dominant, so the studied event challenges the traditional view. The flow channel is observed after substorm onset. We suggest that the observed flow channel, which is associated with a 13-kV horizontal potential difference, accommodates increased nightside plasma flows during the substorm expansion phase as a result of reconnection in the near-Earth magnetotail.

  • 2.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, D-85748 Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, Div Space Sci, Harwell, Oxon, England..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Jordanova, V. K.
    Los Alamos Natl Lab, Los Alamos, NM USA..
    A statistical study of EMIC waves observed by Cluster: 1. Wave properties2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 7, s. 5574-5592Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10years (2001-2010) of data from Cluster, totaling 25,431min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  • 3.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, SSTD, Div Space Sci, Didcot, Oxon, England..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Jordanova, V. K.
    Los Alamos Natl Lab, Los Alamos, NM USA..
    A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 7, s. 6458-6479Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10years (2001-2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. This paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these same frames. Based on the distributions of hot H+ anisotropy, electron and hot H+ density measurements, hot H+ parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.

  • 4.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX USA..
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Coll Comp Math & Nat Sci, College Pk, MD 20742 USA..
    EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 3, s. 3262-3276Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.

  • 5.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH, USA.
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Paulson, K. W.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA; Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA.
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. -A
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Marklund, G. T.
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Differing Properties of Two Ion-Scale Magnetopause Flux Ropes2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 1, s. 114-131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion‐scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub‐di spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.

  • 6.
    Andrews, David
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Gurnett, D. A.
    Morgan, D.
    Nemec, F.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Control of the topside Martian ionosphere by crustal magnetic fields2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 4, s. 3042-3058Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Mars's remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from approximate to 300km to approximate to 1200km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.

  • 7.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Barabash, S.
    Swedish Inst Space Phys, Kiruna, Sweden..
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Hall, B. E. S.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Holmström, M.
    Swedish Inst Space Phys, Kiruna, Sweden..
    Lester, M.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Morgan, D. D.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Ramstad, R.
    Swedish Inst Space Phys, Kiruna, Sweden..
    Sanchez-Cano, B.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Way, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik. NASA Goddard Inst Space Studies, New York, NY USA..
    Witasse, O.
    ESA ESTEC, Noordwijjk, Netherlands..
    Plasma observations during the Mars atmospheric "plume" event of March-April 20122016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 4, s. 3139-3154Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  • 8.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Leyser, Thomas B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Buchert, Stephan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Morgan, D. D.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
    Kopf, A. J.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
    Fallows, K.
    Boston Univ, Ctr Space Phys, Boston, MA USA.
    Withers, P.
    Boston Univ, Ctr Space Phys, Boston, MA USA; Boston Univ, Dept Astron, Commonwealth Ave, Boston, MA USA.
    MARSIS Observations of Field-Aligned Irregularities and Ducted Radio Propagation in the Martian Ionosphere2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 8, s. 6251-6263Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Knowledge of Mars's ionosphere has been significantly advanced in recent years by observations from Mars Express and lately Mars Atmosphere and Volatile EvolutioN. A topic of particular interest are the interactions between the planet's ionospheric plasma and its highly structured crustal magnetic fields and how these lead to the redistribution of plasma and affect the propagation of radio waves in the system. In this paper, we elucidate a possible relationship between two anomalous radar signatures previously reported in observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on Mars Express. Relatively uncommon observations of localized, extreme increases in the ionospheric peak density in regions of radial (cusp-like) magnetic fields and spread echo radar signatures are shown to be coincident with ducting of the same radar pulses at higher altitudes on the same field lines. We suggest that these two observations are both caused by a high electric field (perpendicular to B) having distinctly different effects in two altitude regimes. At lower altitudes, where ions are demagnetized and electrons magnetized, and recombination dominantes, a high electric field causes irregularities, plasma turbulence, electron heating, slower recombination, and ultimately enhanced plasma densities. However, at higher altitudes, where both ions and electrons are magnetized and atomic oxygen ions cannot recombine directly, the high electric field instead causes frictional heating, a faster production of molecular ions by charge exchange, and so a density decrease. The latter enables ducting of radar pulses on closed field lines, in an analogous fashion to interhemispheric ducting in the Earth's ionosphere.

  • 9.
    Andriopoulou, Maria
    et al.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Nakamura, Rumi
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Wellenzohn, Simon
    Karl Franzens Univ Graz, Inst Geophys Astrophys & Meteorol, Graz, Austria.
    Torkar, Klaus
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Baumjohann, Wolfgang
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Lindqvist, Per-Arne
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dorelli, John
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Burch, James L.
    Southwest Res Inst, San Antonio, TX USA.
    Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 4, s. 2620-2629Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using spacecraft potential observations with and without active spacecraft potential control (on/off) from the Magnetospheric Multiscale (MMS) mission, we estimate the average photoelectron emission as well as derive the plasma density information from spacecraft potential variations and active spacecraft potential control ion current. Such estimates are of particular importance especially during periods when the plasma instruments are not in operation and also when electron density observations with higher time resolution than the ones available from particle detectors are necessary. We compare the average photoelectron emission of different spacecraft and discuss their differences. We examine several time intervals when we performed our density estimations in order to understand the strengths and weaknesses of our data set. We finally compare our derived density estimates with the plasma density observations provided by plasma detectors onboard MMS, whenever available, and discuss the overall results. The estimated electron densities should only be used as a proxy of the electron density, complimentary to the plasma moments derived by plasma detectors, especially when the latter are turned off or when higher time resolution observations are required. While the derived data set can often provide valuable information about the plasma environment, the actual values may often be very far from the actual plasma density values and should therefore be used with caution.

  • 10.
    André, Mats
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Li, K.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Outflow of low-energy ions and the solar cycle2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 2, s. 1072-1085Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Magnetospheric ions with energies less than tens of eV originate from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We use two Cluster spacecraft and study low-energy ions with a technique based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the density and the outward flux in the geomagnetic tail lobes during all parts of the solar cycle. The global outflow is of the order of 10(26) ions/s and often dominates over the outflow at higher energies. The outflow increases by a factor of 2 with increasing solar EUV flux during a solar cycle. This increase is mainly due to the increased density of the outflowing population, while the outflow velocity does not vary much. Thus, the outflow is limited by the available density in the ionospheric source rather than by the energy available in the magnetosphere to increase the velocity.

  • 11.
    Argall, M. R.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Paulson, K.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Alm, L.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Rager, A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA; Southwest Res Inst, San Antonio, TX USA.
    Vaith, H.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Dors, I.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Chutter, M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Farrugia, C.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA.
    Pollock, C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Gershman, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Lavraud, B.
    Univ Toulouse, CNRS, Inst Rech Astrophys & Planetol, UPS, Toulouse, France..
    Russell, C. T.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Strangeway, R.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Lindqvist, P. -A
    KTH Royal Inst Technol, Stockholm, Sweden.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Ergun, R. E.
    Univ Colorado Boulder, Boulder, CO USA.
    Ahmadi, N.
    Univ Colorado Boulder, Boulder, CO USA.
    Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 1, s. 146-162Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Abstract: We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma.

    Plain Language Summary: The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.

  • 12.
    Badman, S. V.
    et al.
    JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Cowley, S. W. H.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Lamy, L.
    Observ Paris, Meudon, France..
    Provan, G.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Tao, C.
    JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Kasahara, S.
    JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Kimura, T.
    JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Fujimoto, M.
    JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Melin, H.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Stallard, T.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Brown, R. H.
    Univ Arizona, Lunar & Planetary Lab, Tucson, AZ USA..
    Baines, K. H.
    Univ Wisconsin Madison, SSEC, Madison, NJ USA..
    Rotational modulation and local time dependence of Saturn's infrared H-3(+) auroral intensity2012Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 117, artikel-id A09228Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Planetary auroral emissions reveal the configuration of magnetospheric field-aligned current systems. In this study, Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of Saturn's pre-equinox infrared H-3(+) aurorae were analysed to show (a) rotational modulation of the auroral intensity in both hemispheres and (b) a significant local time dependence of the emitted intensity. The emission intensity is modulated by the 'planetary period' rotation of auroral current systems in each hemisphere. The northern auroral intensity also displays a lesser anti-phase dependence on the southern rotating current system, indicating that part of the southern current system closes in the northern hemisphere. The southern hemisphere aurorae were most intense in the post-dawn sector, in agreement with some past measurements of auroral field-aligned currents, UV aurora and SKR emitted power. A corresponding investigation of the northern hemisphere auroral intensity reveals a broader dawn-noon enhancement, possibly due to the interaction of the southern rotating current system with that of the north. The auroral intensity was reduced around dusk and post-midnight in both hemispheres. These observations can be explained by the interaction of a rotating field-aligned current system in each hemisphere with one fixed in local time, which is related to the solar wind interaction with magnetospheric field lines.

  • 13.
    Breuillard, H.
    et al.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Le Contel, O.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Chust, T.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Berthomier, M.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Retino, A.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Turner, D. L.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Cozzani, G.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Catapano, F.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Alexandrova, A.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Mirioni, L.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Graham, Daniel B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Argall, M. R.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Fischer, D.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Varsani, A.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Lindqvist, P. -A
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Marklund, G.
    Royal Inst Technol, Stockholm, Sweden..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Needell, G.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Chutter, M.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Rau, D.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Dors, I.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Strangeway, R. J.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Bromund, K. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Wei, H.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Anderson, B. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Le, G.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Lavraud, B.
    Univ Paul Sabatier, CNRS UMR5277, Inst Rech Astrophys & Planetol, Toulouse, France..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA..
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Fennell, J. F.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 1, s. 93-103Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi‐perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ∼100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi‐perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05–0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first‐time 3‐D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi‐linear pitch angle diffusion and possible signatures of nonlinear interaction with high‐amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  • 14.
    Burch, J. L.
    et al.
    Southwest Res Inst, San Antonio, TX, USA.
    Webster, J. M.
    Rice Univ, Dept Phys & Astron, Houston, TX USA.
    Genestreti, K. J.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX, USA; Univ New Hampshire, Dept Phys, Durham, NH, USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX, USA.
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Rager, A. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA; Catholic Univ Amer, Dept Phys, Washington DC, USA..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA, USA.
    Allen, R. C.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Chen, L. -J
    Univ Maryland, Dept Astron, College Pk, MD, USA.
    Wang, S.
    Univ Maryland, Dept Astron, College Pk, MD, USA.
    Le Contel, O.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, CNRS, Ecole Polytech,Observ Paris, Paris, France.
    Russell, C. T.
    Univ Calif Los Angeles, Earth & Planetary Sci, Los Angeles, CA, USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, Earth & Planetary Sci, Los Angeles, CA, USA.
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO, USA.
    Jaynes, A. N.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA, USA.
    Lindqvist, P. -A
    Royal Inst Technol, Stockholm, Sweden.
    Graham, Daniel B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Wilder, F. D.
    Univ Colorado, LASP, Boulder, CO, USA.
    Hwang, K. -J
    Southwest Res Inst, San Antonio, TX, USA.
    Goldstein, J.
    Southwest Res Inst, San Antonio, TX, USA.
    Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 2, s. 1118-1133Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.

  • 15. Chen, L. -J
    et al.
    Hesse, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Gershman, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Bessho, N.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Webster, J.
    Rice Univ, Dept Phys & Astron, Houston, TX USA..
    Pollock, C.
    Denali Sci, Healy, AK USA..
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Moore, T.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Paterson, W.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, UMR 5277, Toulouse, France..
    Strangeway, R.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Russell, C.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Khotyaintsev, Yuri
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. -A
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 5, s. 5235-5246Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.

  • 16.
    Cowley, S. W. H.
    et al.
    Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England..
    Provan, G.
    Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Comment on "Magnetic phase structure of Saturn's 10.7h oscillations" by Yates et al.2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 7, s. 5686-5690Artikel i tidskrift (Övrigt vetenskapligt)
  • 17.
    Cowley, S. W. H.
    et al.
    Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England..
    Zarka, P.
    Univ Paris Diderot, Sorbonne Paris Cite, Univ Paris 06, Univ Paris 04,CNRS,PSL Res Univ,LESIA,Observ Pari, Meudon, France..
    Provan, G.
    Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England..
    Lamy, L.
    Univ Paris Diderot, Sorbonne Paris Cite, Univ Paris 06, Univ Paris 04,CNRS,PSL Res Univ,LESIA,Observ Pari, Meudon, France..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Comment on "A new approach to Saturn's periodicities" by J. F. Carbary2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 3, s. 2418-2422Artikel i tidskrift (Övrigt vetenskapligt)
  • 18.
    Deca, Jan
    et al.
    Katholieke Univ Leuven, Dept Math, Ctr Math Plasma Astrophys, Leuven, Belgium.;Univ Versailles St Quentin, Lab Atmospheres, Milieux, Observat Spati, Guyancourt, France.;Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA..
    Divin, Andrey
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia..
    Lembege, Bertrand
    Univ Versailles St Quentin, Lab Atmospheres, Milieux, Observat Spati, Guyancourt, France..
    Horanyi, Mihaly
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA..
    Markidis, Stefano
    Royal Inst Technol, High Performance Comp & Visualizat, Stockholm, Sweden..
    Lapenta, Giovanni
    Katholieke Univ Leuven, Dept Math, Ctr Math Plasma Astrophys, Leuven, Belgium..
    General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3-D particle-in-cell simulations2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 8, s. 6443-6463Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a general model of the solar wind interaction with a dipolar lunar crustal magnetic anomaly (LMA) using three-dimensional full-kinetic and electromagnetic simulations. We confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface, forming a so-called minimagnetosphere, as suggested by spacecraft observations and theory. We show that the LMA configuration is driven by electron motion because its scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of back-streaming ions, the deflection of magnetized electrons via the E x B drift motion, and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the processes are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Understanding the detailed physics of the solar wind interaction with LMAs, including magnetic shielding, particle dynamics and surface charging is vital to evaluate its implications for lunar exploration.

  • 19.
    Dieval, C.
    et al.
    Univ Lancaster, Dept Phys, Lancaster, England.;Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Morgan, D. D.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Brain, D. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    MARSIS remote sounding of localized density structures in the dayside Martian ionosphere: A study of controlling parameters2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 9, s. 8125-8145Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Enhanced topside electron densities in the dayside Martian ionosphere have been repetitively observed in areas of near-radial crustal magnetic fields, for periods of tens of days, indicating their long-term spatial and temporal stability despite changing solar wind conditions. We perform a statistical study of these density structures using the ionospheric mode of the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express. We estimate the apparent extents of these structures relative to the altitude of the surrounding ionosphere. The apex of the density structures often lies higher than the surrounding ionosphere (median vertical extent of 18km), which indicates upwellings. These structures are much wider than they are high, with latitudinal scales of several degrees. The radar reflector regions are observed above both moderate and strong magnetic anomalies, and their precise locations and latitudinal extents match quite well with the locations and latitudinal extents of magnetic structures of given magnetic polarity (oblique to vertical fields), which happen to be regions where the field lines are open part of the time. The majority of the density structures occur in regions where ionospheric plasma is dominant, indicating closed field regions shielded from shocked solar wind plasma.

  • 20.
    Dimmock, Andrew P.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo, Finland.
    Alho, M.
    Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo, Finland.
    Kallio, Esa
    Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo, Finland.
    Pope, Simon Alexander
    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England.
    Zhang, Tielong
    Harbin Inst Technol, Shenzhen, Peoples R China; Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Kilpua, E.
    Univ Helsinki, Dept Phys, Helsinki, Finland.
    Pulkkinen, Tuija I.
    Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo, Finland.
    Futaana, Y.
    Swedish Inst Space Phys, Kiruna, Sweden.
    Coates, Andrew J.
    UCL, Mullard Space Sci Lab, London, England.
    The Response of the Venusian Plasma Environment to the Passage of an ICME: Hybrid Simulation Results and Venus Express Observations2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 5, s. 3580-3601Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Owing to the heritage of previous missions such as the Pioneer Venus Orbiter and Venus Express, the typical global plasma environment of Venus is relatively well understood. On the other hand, this is not true for more extreme driving conditions such as during passages of interplanetary coronal mass ejections (ICMEs). One of the outstanding questions is how do ICMEs, either the ejecta or sheath portions, impact (1) the Venusian magnetic topology and (2) escape rates of planetary ions? One of the main issues encountered when addressing these problems is the difficulty of inferring global dynamics from single spacecraft obits; this is where the benefits of simulations become apparent. In the present study, we present a detailed case study of an ICME interaction with Venus on 5 November 2011 in which the magnetic barrier reached over 250 nT. We use both Venus Express observations and hybrid simulation runs to study the impact on the field draping pattern and the escape rates of planetary O+ ions. The simulation showed that the magnetic field line draping pattern around Venus during the ICME is similar to that during typical solar wind conditions and that O+ ion escape rates are increased by approximately 30% due to the ICME. Moreover, the atypically large magnetic barrier appears to manifest from a number of factors such as the flux pileup, dayside compression, and the driving time from the ICME ejecta.

  • 21.
    Divin, A.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Markidis, S.
    Lapenta, G.
    Evolution of the lower hybrid drift instability at reconnection jet front2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 4, s. 2675-2690Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate current-driven modes developing at jet fronts during collisionless reconnection. Initial evolution of the reconnection is simulated using conventional 2-D setup starting from the Harris equilibrium. Three-dimensional PIC calculations are implemented at later stages, when fronts are fully formed. Intense currents and enhanced wave activity are generated at the fronts because of the interaction of the fast flow plasma and denser ambient current sheet plasma. The study reveals that the lower hybrid drift instability develops quickly in the 3-D simulation. The instability produces strong localized perpendicular electric fields, which are several times larger than the convective electric field at the front, in agreement with Time History of Events and Macroscale Interactions during Substorms observations. The instability generates waves, which escape the front edge and propagate into the undisturbed plasma ahead of the front. The parallel electron pressure is substantially larger in the 3-D simulation compared to that of the 2-D. In a time similar to Omega(-1)(ci), the instability forms a layer, which contains a mixture of the jet plasma and current sheet plasma. The results confirm that the lower hybrid drift instability is important for the front evolution and electron energization.

  • 22.
    Divin, Andrey
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lower hybrid drift instability at a dipolarization front2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 2, s. 1124-1132Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present observations of a reconnection jet front detected by the Cluster satellites in the magnetotail of Earth, which are commonly referred to as dipolarization fronts. We investigate in detail electric field structures observed at the front which have frequency in the lower hybrid range and amplitudes reaching 40mV/m. We determine the frequency and phase velocity of these structures in the reference frame of the front and identify them as a manifestation of the lower hybrid drift instability (LHDI) excited at the sharp density gradient at the front. The LHDI is observed in the nonlinear stage of its evolution as the electrostatic potential of the structures is comparable to approximate to 10% of the electron temperature. The front appears to be a coherent structure on ion and MHD scales, suggesting existence of a dynamic equilibrium between excitation of the LHDI and recovery of the steep density gradient at the front.

  • 23.
    Divin, Andrey
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Toledo-Redondo, S.
    European Space Agcy, ESAC, Sci Directorate, Madrid, Spain..
    Markidis, S.
    KTH Royal Inst Technol, Dept Computat Sci & Technol, Stockholm, Sweden..
    Lapenta, G.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium..
    Three-scale structure of diffusion region in the presence of cold ions2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 12, s. 12001-12013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Kinetic simulations and spacecraft observations typically display the two-scale structure of collisionless diffusion region (DR), with electron and ion demagnetization scales governing the spatial extent of the DR. Recent in situ observations of the nightside magnetosphere, as well as investigation of magnetic reconnection events at the Earth's magnetopause, discovered the presence of a population of cold (tens of eV) ions of ionospheric origin. We present two-dimensional particle-in-cell simulations of collisionless magnetic reconnection in multicomponent plasma with ions consisting of hot and cold populations. We show that a new cold ion diffusion region scale is introduced in between that of hot ions and electrons. Demagnetization scale of cold ion population is several times (similar to 4-8) larger than the initial cold ion gyroradius. Cold ions are accelerated and thermalized during magnetic reconnection and form ion beams moving with velocities close to the Alfven velocity.

  • 24.
    Duan, Suping
    et al.
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Dai, Lei
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Wang, Chi
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    He, Zhaohai
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Cai, Chunlin
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Zhang, Y. C.
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Dandouras, I.
    Univ Toulouse, UPS OMP, IRAP, Toulouse, France.;CNRS, IRAP, Toulouse, France..
    Reme, H.
    Univ Toulouse, UPS OMP, IRAP, Toulouse, France.;CNRS, IRAP, Toulouse, France..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Oxygen Ions O+ Energized by Kinetic Alfven Eigenmode During Dipolarizations of Intense Substorms2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 11, s. 11256-11273Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Singly charged oxygen ions, O+, energized by kinetic Alfven wave eigenmode (KAWE) in the plasma sheet boundary layer during dipolarizations of two intense substorms, 10: 07 UT on 31 August 2004 and 18: 24 UT on 14 September 2004, are investigated by Cluster spacecraft in the magnetotail. It is found that after the beginning of the expansion phase of substorms, O+ ions are clearly energized in the direction perpendicular to the magnetic field with energy larger than 1 keV in the near-Earth plasma sheet during magnetic dipolarizations. The pitch angle distribution of these energetic O+ ions is significantly different from that of O+ ions with energy less than 1 keV before substorm onset that is in the quasi-parallel direction along the magnetic field. The KAWE with the large perpendicular unipolar electric field, E-z similar to -20 mV/m, significantly accelerates O+ ions in the direction perpendicular to the background magnetic field. We present good evidences that O+ ion origin from the ionosphere along the magnetic field line in the northward lobe can be accelerated in the perpendicular direction during substorm dipolarizations. The change of the move direction of O+ ions is useful for O+ transferring from the lobe into the central plasma sheet in the magnetotail. Thus, KAWE can play an important role in O+ ion transfer process from the lobe into the plasma sheet during intense substorms.

  • 25.
    Edberg, Niklas J. T.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Bertucci, C.
    IAFE, Buenos Aires, DF, Argentina..
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Holmberg, Mika K. G.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Jackman, C. M.
    Univ Southampton, Southampton, Hants, England..
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Menietti, J. D.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Shebanits, Oleg
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vigren, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Wahlund, Jan-Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Effects of Saturn's magnetospheric dynamics on Titan's ionosphere2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 10, s. 8884-8898Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from approximate to 200eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.

  • 26.
    Edberg, Niklas J. T.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Odelstad, Elias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik.
    Vigren, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andrews, D. J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Johansson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Burch, J. L.
    SW Res Inst, San Antonio, TX USA..
    Carr, C. M.
    Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London, England..
    Cupido, E.
    Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London, England..
    Glassmeier, K. -H
    Goldstein, R.
    SW Res Inst, San Antonio, TX USA..
    Halekas, J. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Henri, P.
    Lab Phys & Chim Environm & Espace, Orleans, France..
    Koenders, C.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany..
    Mandt, K.
    SW Res Inst, San Antonio, TX USA..
    Mokashi, P.
    SW Res Inst, San Antonio, TX USA..
    Nemeth, Z.
    Wigner Res Ctr Phys, Budapest, Hungary..
    Nilsson, H.
    Swedish Inst Space Phys, S-98128 Kiruna, Sweden..
    Ramstad, R.
    Swedish Inst Space Phys, S-98128 Kiruna, Sweden..
    Richter, I.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany..
    Wieser, G. Stenberg
    Swedish Inst Space Phys, S-98128 Kiruna, Sweden..
    Solar wind interaction with comet 67P: Impacts of corotating interaction regions2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 2, s. 949-965Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7AU from the Sun and the neutral outgassing rate approximate to 10(25)-10(26)s(-1), the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30km. The ionospheric low-energy (approximate to 5eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (approximate to 10-100eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.

  • 27.
    Ergun, R. E.
    et al.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Andersson, L. A.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Fowler, C. M.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Woodson, A. K.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Weber, T. D.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Delory, G. T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    McEnulty, T.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Morooka, M. W.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Stewart, A. I. F.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Mahaffy, P. R.
    NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Code 699, Greenbelt, MD USA..
    Jakosky, B. M.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Enhanced O-2(+) loss at Mars due to an ambipolar electric field from electron heating2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 5, s. 4668-4678Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent results from the MAVEN Langmuir Probe and Waves instrument suggest higher than predicted electron temperatures (T-e) in Mars' dayside ionosphere above similar to 180km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer indicate significant abundances of O-2(+) up to similar to 500km in altitude, suggesting that O-2(+) may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T-e (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T-e may greatly increase O-2(+) loss at Mars. In particular, enhanced T-e in Mars' ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(B)T(e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron, and ion heating, direct O-2(+) loss could match or exceed loss via dissociative recombination of O-2(+). These results suggest that direct loss of O-2(+) may have played a significant role in the loss of oxygen at Mars over time.

  • 28.
    Eriksson, Elin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Graham, Daniel. B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Yordanova, Emiliya
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Hietala, H.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Lavraud, B.
    CNRS, IRAP, Toulouse, France..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    JAXA, Chofu, Tokyo, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C.
    Torbert, R.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Ergun, R.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA..
    Lindqvist, P-A
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 10, s. 9608-9618Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Localized kinetic-scale regions of strong current are believed to play an important role in plasma thermalization and particle acceleration in turbulent plasmas. We present a detailed study of a strong localized current, 4900 nA m(-2), located at a fast plasma jet observed in the magnetosheath downstream of a quasi-parallel shock. The thickness of the current region is similar to 3 ion inertial lengths and forms at a boundary separating magnetosheath-like and solar wind-like plasmas. On ion scales the current region has the shape of a sheet with a significant average normal magnetic field component but shows strong variations on smaller scales. The dynamic pressure within the magnetosheath jet is over 3 times the solar wind dynamic pressure. We suggest that the current sheet is forming due to high velocity shears associated with the jet. Inside the current sheet we observe local electron acceleration, producing electron beams, along the magnetic field. However, there is no clear sign of ongoing reconnection. At higher energies, above the beam energy, we observe a loss cone consistent with part of the hot magnetosheath-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within the current sheet is similar to the one that occurs at shocks, where electron beams and loss cones are also observed. Therefore, electron beams observed in the magnetosheath do not have to originate from the bow shock but can also be generated locally inside the magnetosheath.

  • 29.
    Farrugia, C. J.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lugaz, N.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Alm, L.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Vasquez, B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Argall, M. R.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Kucharek, H.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Matsui, H.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys, Toulouse, France..
    Le Contel, O.
    UPMC Univ Paris 06, Univ Paris Sud, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England..
    Ergun, R. E.
    Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA.;Univ Texas San Antonio, Dept Phys, San Antonio, TX USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Marklund, G. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Paulson, K. W.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA..
    Phan, T. D.
    Space Sci Lab, Berkeley, CA USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvenic Flow2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 10, s. 9934-9951Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (similar to 20 nT) pointing south and (ii) a density profile with episodic decreases to values of similar to 0.3 cm(-3) followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of similar to 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfven waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (T-e perpendicular to > T-e parallel to) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.

  • 30.
    Fowler, C. M.
    et al.
    University of Colorado Boulder, Laboratory for Atmospheric and Space Physics.
    Andersson, L.
    University of Colorado Boulder, Laboratory for Atmospheric and Space Physics.
    Halekas, J.
    University Of Iowa, Department of Physics And Astronomy.
    Espley, J. R.
    NASA, Goddard Space Flight Center.
    Mazelle, C.
    University of Toulouse, CNRS, UPS, IRAP,CNES.
    Coughlin, E. R.
    University of California Berkeley, Department Astronomy; University of California Berkeley, Theoretical Astrophysics Center; Einstein Fellow.
    Ergun, R. E.
    University of Colorado Boulder, Laboratory for Atmospheric and Space Physics.
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Connerney, J. E. P.
    NASA, Goddard Space Flight Center.
    Jakosky, B.
    University of Colorado Boulder, Laboratory for Atmospheric and Space Physics.
    Electric and magnetic variations in the near-Mars environment2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 8, s. 8536-8559Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For the first time at Mars the statistical distribution of (1-D) electric field wave power in the magnetosphere is presented, along with the distribution of magnetic field wave power, as observed by the Mars Atmosphere and Volatile EvolutioN spacecraft from the first 14.5months of the mission. Wave power in several different frequency bands was investigated, and the strongest wave powers were observed at the lowest frequencies. The presented statistical studies suggest that the full thermalization of ions within the magnetosheath does not appear to occur, as has been predicted by previous studies. Manual inspection of 140 periapsis passes on the dayside shows that Poynting fluxes (at 2-16 Hz) between similar to 10(-11) and 10(-8) Wm(-2) reach the upper ionosphere for all 140 cases. Wave power is not observed in the ionosphere for integrated electron densities greater than 10(10.8)cm(-2), corresponding to typical depths of 100-200 km. The observations presented support previous suggestions that energy from the Mars-solar wind interaction can propagate into the upper ionosphere and may provide an ionospheric heating source. Upstream of the shock, the orientation of the solar wind interplanetary magnetic field was shown to significantly affect the statistical distribution of wave power, based on whether the spacecraft was likely magnetically connected to the shock or not-something that is predicted but has not been quantitatively shown at Mars before. In flight performance and caveats of the Langmuir Probe and Waves electric field power spectra are also discussed.

  • 31. Fu, H. S.
    et al.
    Cao, J. B.
    Cully, C. M.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Angelopoulos, V.
    Zong, Q. -G
    Santolik, O.
    Macusova, E.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Liu, W. L.
    Lu, H. Y.
    Zhou, M.
    Huang, S. Y.
    Zhima, Z.
    Whistler-mode waves inside flux pileup region: Structured or unstructured?2014Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, nr 11, s. 9089-9100Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During reconnection, a flux pileup region (FPR) is formed behind a dipolarization front in an outflow jet. Inside the FPR, the magnetic field magnitude and Bz component increase and the whistler-mode waves are observed frequently. As the FPR convects toward the Earth during substorms, it is obstructed by the dipolar geomagnetic field to form a near-Earth FPR. Unlike the structureless emissions inside the tail FPR, we find that the whistler-mode waves inside the near-Earth FPR can exhibit a discrete structure similar to chorus. Both upper band and lower band chorus are observed, with the upper band having a larger propagation angle (and smaller wave amplitude) than the lower band. Most chorus elements we observed are rising-tone type, but some are falling-tone type. We notice that the rising-tone chorus can evolve into falling-tone chorus within <3s. One of the factors that may explain why the waves are unstructured inside the tail FPR but become discrete inside the near-Earth FPR is the spatial inhomogeneity of magnetic field: we find that such inhomogeneity is small inside the near-Earth FPR but large inside the tail FPR.

  • 32.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andre, M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dunlop, M.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Liu, W. L.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Lu, H. Y.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Peoples R China..
    Ma, Y. D.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Eriksson, Elin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik.
    Identifying magnetic reconnection events using the FOTE method2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 2, s. 1263-1272Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A magnetic reconnection event detected by Cluster is analyzed using three methods: Single-spacecraft Inference based on Flow-reversal Sequence (SIFS), Multispacecraft Inference based on Timing a Structure (MITS), and the First-Order Taylor Expansion (FOTE). Using the SIFS method, we find that the reconnection structure is an X line; while using the MITS and FOTE methods, we find it is a magnetic island (O line). We compare the efficiency and accuracy of these three methods and find that the most efficient and accurate approach to identify a reconnection event is FOTE. In both the guide and nonguide field reconnection regimes, the FOTE method is equally applicable. This study for the first time demonstrates the capability of FOTE in identifying magnetic reconnection events; it would be useful to the forthcoming Magnetospheric Multiscale (MMS) mission. ion

  • 33.
    Fu, H. S.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Beihang Univ, Space Sci Inst, Sch Astronaut, Beijing 100191, Peoples R China.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Olshevsky, V.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium.;Main Astron Observ NAS, Kiev, Ukraine..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Cao, J. B.
    Beihang Univ, Space Sci Inst, Sch Astronaut, Beijing 100191, Peoples R China..
    Huang, S. Y.
    Ecole Polytech, CNRS, UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France.;Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Peoples R China.
    Retino, A.
    Ecole Polytech, CNRS, UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Lapenta, G.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium..
    How to find magnetic nulls and reconstruct field topology with MMS data?2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 5, s. 3758-3782Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, we apply a new method-the first-order Taylor expansion (FOTE)-to find magnetic nulls and reconstruct magnetic field topology, in order to use it with the data from the forthcoming MMS mission. We compare this method with the previously used Poincare index (PI), and find that they are generally consistent, except that the PI method can only find a null inside the spacecraft (SC) tetrahedron, while the FOTE method can find a null both inside and outside the tetrahedron and also deduce its drift velocity. In addition, the FOTE method can (1) avoid limitations of the PI method such as data resolution, instrument uncertainty (Bz offset), and SC separation; (2) identify 3-D null types (A, B, As, and Bs) and determine whether these types can degenerate into 2-D (X and O); (3) reconstruct the magnetic field topology. We quantitatively test the accuracy of FOTE in positioning magnetic nulls and reconstructing field topology by using the data from 3-D kinetic simulations. The influences of SC separation (0.05 similar to 1 d(i)) and null-SC distance (0 similar to 1 d(i)) on the accuracy are both considered. We find that (1) for an isolated null, the method is accurate when the SC separation is smaller than 1 d(i), and the null-SC distance is smaller than 0.25 similar to 0.5 d(i); (2) for a null pair, the accuracy is same as in the isolated-null situation, except at the separator line, where the field is nonlinear. We define a parameter xi vertical bar(lambda(1) +lambda(2) +lambda(3))vertical bar/vertical bar lambda vertical bar(max) in terms of the eigenvalues (lambda(i)) of the null to quantify the quality of our method-the smaller this parameter the better the results. Comparing to the previously used parameter (eta vertical bar del center dot B vertical bar/vertical bar del x B vertical bar), xi is more relevant for null identification. Using the new method, we reconstruct the magnetic field topology around a radial-type null and a spiral-type null, and find that the topologies are well consistent with those predicted in theory. We therefore suggest using this method to find magnetic nulls and reconstruct field topology with four-point measurements, particularly from Cluster and the forthcoming MMS mission. For the MMS mission, this null-finding algorithm can be used to trigger its burst-mode measurements.

  • 34.
    Fuselier, S. A.
    et al.
    Southwest Res Inst, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Vines, S. K.
    Southwest Res Inst, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA.;Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA..
    Trattner, K. J.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Cassak, P. A.
    West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA..
    Chen, L. -J
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Eriksson, S.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Giles, B. L.
    Goddard Space Flight Ctr, Greenbelt, MD USA..
    Graham, Daniel B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Plantol, Toulouse, France.;CNRS, Toulouse, France..
    Lewis, W. S.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Mukherjee, J.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Norgren, Cecilia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Phan, T. -D
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX 78238 USA.;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Webster, J. M.
    Rice Univ, Phys & Astron, Houston, TX USA..
    Large-scale characteristics of reconnection diffusion regions and associated magnetopause crossings observed by MMS2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 5, s. 5466-5486Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Magnetospheric Multiscale (MMS) mission was designed to make observations in the very small electron diffusion region (EDR), where magnetic reconnection takes place. From a data set of over 4500 magnetopause crossings obtained in the first phase of the mission, MMS had encounters near or within 12 EDRs. These 12 events and associated magnetopause crossings are considered as a group to determine if they span the widest possible range of external and internal conditions (i.e., in the solar wind and magnetosphere). In addition, observations from MMS are used to determine if there are multiple X-lines present and also to provide information on X-line location relative to the spacecraft. These 12 events represent nearly the widest possible range of conditions at the dayside magnetopause. They occur over a wide range of local times and magnetic shear angles between the magnetosheath and magnetospheric magnetic fields. Most show evidence for multiple reconnection sites.

  • 35.
    Genestreti, K. J.
    et al.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Varsani, A.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Cassak, P. A.
    West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA.
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX USA;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Ergun, R. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA;Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Phan, T-D
    Toledo-Redondo, S.
    ESAC, European Space Agcy, Sci Directorate, Madrid, Spain.
    Hesse, M.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Wang, S.
    Univ Maryland, Astron Dept, College Pk, MD 20742 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD USA.
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
    Voros, Z.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Hwang, K-J
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England.
    Lavraud, B.
    Inst Rech Astrophys & Planetol, Toulouse, France.
    Escoubet, C. P.
    European Space Agcy, Space Sci Dept, Noordwijk, Netherlands.
    Fear, R. C.
    Univ Southampton, Dept Phys & Astron, Southampton, Hants, England.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Nakamura, T. K. M.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Webster, J. M.
    Rice Univ, Dept Phys & Astron, Houston, TX USA.
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    MMS Observation of Asymmetric Reconnection Supported by 3-D Electron Pressure Divergence2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 3, s. 1806-1821Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We identify the electron diffusion region (EDR) of a guide field dayside reconnection site encountered by the Magnetospheric Multiscale (MMS) mission and estimate the terms in generalized Ohm's law that controlled energy conversion near the X-point. MMS crossed the moderate-shear (similar to 130 degrees) magnetopause southward of the exact X-point. MMS likely entered the magnetopause far from the X-point, outside the EDR, as the size of the reconnection layer was less than but comparable to the magnetosheath proton gyroradius, and also as anisotropic gyrotropic "outflow" crescent electron distributions were observed. MMS then approached the X-point, where all four spacecraft simultaneously observed signatures of the EDR, for example, an intense out-of-plane electron current, moderate electron agyrotropy, intense electron anisotropy, nonideal electric fields, and nonideal energy conversion. We find that the electric field associated with the nonideal energy conversion is (a) well described by the sum of the electron inertial and pressure divergence terms in generalized Ohms law though (b) the pressure divergence term dominates the inertial term by roughly a factor of 5:1, (c) both the gyrotropic and agyrotropic pressure forces contribute to energy conversion at the X-point, and (d) both out-of-the-reconnection-plane gradients (partial derivative/partial derivative M) and in-plane (partial derivative/partial derivative L, N) in the pressure tensor contribute to energy conversion near the X-point. This indicates that this EDR had some electron-scale structure in the out-of-plane direction during the time when (and at the location where) the reconnection site was observed.

  • 36.
    Gingell, Imogen
    et al.
    Imperial Coll London, Blackett Lab, London, England..
    Schwartz, Steven J.
    Imperial Coll London, Blackett Lab, London, England..
    Burgess, David
    Queen Mary Univ London, Sch Phys & Astron, London, England..
    Johlander, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Russell, Christopher T.
    Univ Calif Los Angeles, Dept Earth & Planetary Sci Phys, Los Angeles, CA USA..
    Burch, James L.
    Southwest Res Inst, San Antonio, TX USA..
    Ergun, Robert E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Fuselier, Stephen
    Southwest Res Inst, San Antonio, TX USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA..
    Gershman, Daniel J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, Barbara L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Goodrich, Katherine A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lavraud, Benoit
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France..
    Lindqvist, Per-Arne
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Strangeway, Robert J.
    Univ Calif Los Angeles, Dept Earth & Planetary Sci Phys, Los Angeles, CA USA..
    Trattner, Karlheinz
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Torbert, Roy B.
    Univ New Hampshire, Phys Dept, Durham, NH 03824 USA..
    Wei, Hanying
    Univ Calif Los Angeles, Dept Earth & Planetary Sci Phys, Los Angeles, CA USA..
    Wilder, Frederick
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 11, s. 11003-11017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Simulations and observations of collisionless shocks have shown that deviations of the nominal local shock normal orientation, that is, surface waves or ripples, are expected to propagate in the ramp and overshoot of quasi-perpendicular shocks. Here we identify signatures of a surface ripple propagating during a crossing of Earth's marginally quasi-parallel (theta(Bn) similar to 45 degrees) or quasi-parallel bow shock on 27 November 2015 06: 01: 44 UTC by the Magnetospheric Multiscale (MMS) mission and determine the ripple's properties using multispacecraft methods. Using two-dimensional hybrid simulations, we confirm that surface ripples are a feature of marginally quasi-parallel and quasi-parallel shocks under the observed solar wind conditions. In addition, since these marginally quasi-parallel and quasi-parallel shocks are expected to undergo a cyclic reformation of the shock front, we discuss the impact of multiple sources of nonstationarity on shock structure. Importantly, ripples are shown to be transient phenomena, developing faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change in properties of the ripple observed by MMS is consistent with the reformation of the shock front over a time scale of an ion gyroperiod.

  • 37.
    Graham, Daniel B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Cairns, Iver H.
    The Langmuir waves associated with the 1 December 2013 type II burst2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 6, s. 4126-4141Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Langmuir waves associated with an interplanetary type II source region are presented. The type II burst was first observed on 29 November 2013 by STEREO A and B, with the shock crossing STEREO A on 1 December 2013. In the foreshock region upstream of the shock, 11 Langmuir-like waveforms were recorded by STEREO A's Time Domain Sampler on three orthogonal antennas. The observed Langmuir wave electric fields are of large amplitude and aligned with the background magnetic field. Some of the waveforms show evidence of electrostatic decay, and several are consistent with Langmuir eigenmodes of density wells. Harmonic electric fields are observed simultaneously with the Langmuir waveforms and are consistent with fields produced by nonlinear currents. The beam speeds v(b) exciting the Langmuir waves are estimated from the waveform data, yielding speeds v(b) approximate to(0.01-0.04)c. These are consistent with previous observations. The beam speeds are slower than those associated with type III solar radio bursts, consistent with the Langmuir wave electric fields being field aligned. The evidence found for electrostatic decay and against strong perpendicular fields, and so low-wave number Langmuir/z-mode waves, suggests that the dominant emission mechanisms for this type II foreshock involve electrostatic decay and nonlinear wave processes, rather than linear-mode conversion. Harmonic radio emission via antenna mechanisms involving Langmuir waves remains possible.

  • 38.
    Graham, Daniel B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Norgren, Cecilia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Toledo-Redondo, S.
    European Space Agcy ESAC, Madrid, Spain..
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden..
    Ergun, R. E.
    Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD USA..
    Lavraud, B.
    Univ Toulouse UPS, Inst Rech Astrophys & Plantol, Toulouse, France.;Ctr Natl Rech Sci, Toulouse, France..
    Saito, Y.
    JAXA, Inst Space & Aeronaut Sci, Sagamihara, Kanagawa, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Lower hybrid waves in the ion diffusion and magnetospheric inflow regions2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 1, s. 517-533Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The role and properties of lower hybrid waves in the ion diffusion region and magnetospheric inflow region of asymmetric reconnection are investigated using the Magnetospheric Multiscale (MMS) mission. Two distinct groups of lower hybrid waves are observed in the ion diffusion region and magnetospheric inflow region, which have distinct properties and propagate in opposite directions along the magnetopause. One group develops near the ion edge in the magnetospheric inflow, where magnetosheath ions enter the magnetosphere through the finite gyroradius effect and are driven by the ion-ion cross-field instability due to the interaction between the magnetosheath ions and cold magnetospheric ions. This leads to heating of the cold magnetospheric ions. The second group develops at the sharpest density gradient, where the Hall electric field is observed and is driven by the lower hybrid drift instability. These drift waves produce cross-field particle diffusion, enabling magnetosheath electrons to enter the magnetospheric inflow region thereby broadening the density gradient in the ion diffusion region.

  • 39.
    Graham, Daniel B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andre, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Electrostatic solitary waves and electrostatic waves at the magnetopause2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 4, s. 3069-3092Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrostatic solitary waves (ESWs) are characterized by localized bipolar electric fields parallel to the magnetic field and are frequently observed in space plasmas. In this paper a study of ESWs and field-aligned electrostatic waves, which do not exhibit localized bipolar fields, near the magnetopause is presented using the Cluster spacecraft. The speeds, length scales, field strengths, and potentials are calculated and compared with the local plasma conditions. A large range of speeds is observed, suggesting different generation mechanisms. In contrast, a smaller range of length scales normalized to the Debye length lambda(D) is found. For ESWs the average length between the positive and negative peak fields is 9 lambda(D), comparable to the average half wavelength of electrostatic waves. Statistically, the lengths and speeds of ESWs and electrostatic waves are shown to be similar. The length scales and potentials of the ESWs are consistent with predictions for stable electron holes. The maximum ESW potentials are shown to be constrained by the length scale and the magnetic field strength at the magnetopause and in the magnetosheath. The observed waves are consistent with those generated by the warm bistreaming instability, beam-plasma instability, and electron-ion instabilities, which account for the observed speeds and length scales. The large range of wave speeds suggests that the waves can couple different electron populations and electrons with ions, heating the plasma and contributing to anomalous resistivity.

  • 40.
    Graham, Daniel. B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri. V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Swedish Inst Space Phys, Uppsala, Sweden..
    Andre, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Whistler emission in the separatrix regions of asymmetric magnetic reconnection2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 3, s. 1934-1954Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    At Earth's dayside magnetopause asymmetric magnetic reconnection occurs between the cold dense magnetosheath plasma and the hot tenuous magnetospheric plasma, which differs significantly from symmetric reconnection. During magnetic reconnection the separatrix regions are potentially unstable to a variety of instabilities. In this paper observations of the separatrix regions of asymmetric reconnection are reported as Cluster crossed the magnetopause near the subsolar point. The small relative motion between the spacecraft and plasma allows spatial changes of electron distributions within the separatrix regions to be resolved over multiple spacecraft spins. The electron distributions are shown to be unstable to the electromagnetic whistler mode and the electrostatic beam mode. Large-amplitude whistler waves are observed in the magnetospheric and magnetosheath separatrix regions, and outflow region. In the magnetospheric separatrix regions the observed whistler waves propagate toward the X line, which are shown to be driven by the loss in magnetospheric electrons propagating away from the X line and are enhanced by the presence of magnetosheath electrons. The beam mode waves are predicted to be produced by beams of magnetosheath electrons propagating away from the X line and potentially account for some of the electrostatic fluctuations observed in the magnetospheric separatrix regions.

  • 41.
    Graham, Daniel B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Le Contel, O.
    Univ Paris Sud, UPMC Univ Paris 06, Observ Paris, LPP,UMR7648,CNRS,Ecole Polytech, Paris, France.
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Lindqvist, P. -A
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Large-Amplitude High-Frequency Waves at Earth's Magnetopause2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 4, s. 2630-2657Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1Vm(-1), and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.

  • 42.
    Graham, Daniel B.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Eriksson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Lindqvist, P-A
    KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Enhanced Escape of Spacecraft Photoelectrons Caused by Langmuir and Upper Hybrid Waves2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 9, s. 7534-7553Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The spacecraft potential is often used to infer rapid changes in the thermal plasma density. The variations in spacecraft potential associated with large-amplitude Langmuir and upper hybrid waves are investigated with the Magnetospheric Multiscale (MMS) mission. When large-amplitude Langmuir and upper hybrid waves are observed, the spacecraft potential increases. The changes in spacecraft potential are shown to be due to enhanced photoelectron escape from the spacecraft when the wave electric fields reach large amplitude. The fluctuations in spacecraft potential follow the envelope function of the Langmuir and upper hybrid waves. Comparison with the high-resolution electron moments shows that the changes in spacecraft potential associated with the waves are not due to density perturbations. Indeed, using the spacecraft potential as a density probe leads to unphysically large density fluctuations. In addition, the changes in spacecraft potential are shown to increase as density decreases: larger spacecraft potential changes are observed in the magnetosphere, than in the magnetosheath and solar wind. These results show that external electric fields can lead to unphysical results when the spacecraft potential is used as a density probe. The results suggest that fluctuations in the spacecraft potential alone cannot be used to determine whether nonlinear processes associated with Langmuir and upper hybrid waves, such as the ponderomotive force and three-wave decay, are occurring.

  • 43. Grigorenko, E. E.
    et al.
    Sauvaud, J. -A
    Palin, Laurianne
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Jacquey, C.
    Zelenyi, L. M.
    THEMIS observations of the current sheet dynamics in response to the intrusion of the high-velocity plasma flow into the near-Earth magnetotail2014Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, nr 8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A small separation between Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes allows us to analyze a sudden activation in the near-Earth current sheet (CS) at microscales. The start of the activation coincides with the appearance of an earthward plasma flow and dipolarization front (DF) at THEMIS location. The time sequence of observations of the fast plasma flow and the associated DF by three THEMIS probes denotes their dawnward displacement and the localization of the flow channel in the dawn-dusk direction. The onset of kink perturbations of the CS was generated on the dawn side of the flow. These fluctuations also propagated dawnward and were followed by the CS thinning (L similar to rho(i)) and by the development of tearing instability with transient appearance of a magnetic null point. The region of the unstable CS with a magnetic null point was localized in the X and, possibly, in the Y directions. The CS perturbations were most likely triggered by the intrusion of the fast flow into the ambient plasma in the course of the global dawnward displacement of the flow structure. Although no substorm onset was observed during the CS activation, a ground signature of a pseudobreakup was detected just after the excitement of the tearing mode in the near-Earth tail. Probably the pseudobreakup was caused by a localized diversion of the current, which could result from the disruption of the cross-tail current in a localized region of the near-Earth CS.

  • 44.
    Haaland, S.
    et al.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.;Max Planck Inst Solar Syst Res, Gottingen, Germany..
    Eriksson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Maes, L.
    Belgian Inst Aeron, Brussels, Belgium..
    Baddeley, L.
    Univ Ctr Svalbard, Dept Arctic Geophys, Longyearbyen, Norway..
    Barakat, A.
    Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA..
    Chappell, R.
    Vanderbilt Univ, Sci & Res Commun, Nashville, TN 37235 USA..
    Eccles, V.
    Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA..
    Johnsen, C.
    Univ Oslo, Dept Geophys, Oslo, Norway..
    Lybekk, B.
    Univ Oslo, Dept Phys, Oslo, Norway..
    Li, K.
    Max Planck Inst Solar Syst Res, Gottingen, Germany..
    Pedersen, A.
    Univ Oslo, Dept Phys, Oslo, Norway..
    Schunk, R.
    Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA..
    Welling, D.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.;Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA..
    Estimation of cold plasma outflow during geomagnetic storms2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 12, s. 10622-10639Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  • 45.
    Habarulema, John Bosco
    et al.
    South African Natl Space Agcy, Hermanus, South Africa; Rhodes Univ, Dept Phys & Elect, Grahamstown, South Africa.
    Yizengaw, Endawoke
    Boston Coll, Inst Sci Res, Chestnut Hill, MA USA.
    Katamzi-Joseph, Zama T.
    South African Natl Space Agcy, Hermanus, South Africa; Rhodes Univ, Dept Phys & Elect, Grahamstown, South Africa.
    Moldwin, Mark B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Buchert, Stephan
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI USA.
    Storm Time Global Observations of Large-Scale TIDs From Ground-Based and In Situ Satellite Measurements2018Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 1, s. 711-724Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16–18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large‐scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large‐scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400–700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large‐scale TIDs are visible over the European‐African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm‐induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.

  • 46.
    Hall, B. E. S.
    et al.
    Univ Leicester, Dept Phys & Astron, Radio & Space Plasma Phys Grp, Leicester, Leics, England..
    Lester, M.
    Univ Leicester, Dept Phys & Astron, Radio & Space Plasma Phys Grp, Leicester, Leics, England..
    Nichols, J. D.
    Univ Leicester, Dept Phys & Astron, Radio & Space Plasma Phys Grp, Leicester, Leics, England..
    Sanchez-Cano, B.
    Univ Leicester, Dept Phys & Astron, Radio & Space Plasma Phys Grp, Leicester, Leics, England..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Swedish Inst Space Phys, Uppsala, Sweden..
    Fraenz, M.
    Max Planck Inst Solar Syst Res, Gottingen, Germany..
    A survey of superthermal electron flux depressions, or "electron holes," within the illuminated Martian induced magnetosphere2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 5, s. 4835-4857Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Since Mars lacks a global intrinsic magnetic field, the solar wind interacts directly with the Martian upper atmosphere and ionosphere. The presence of localized intense remnant crustal magnetic fields adds to this interaction, making the Martian plasma system a unique environment within the solar system. Rapid reductions in the electron flux, referred to as electron holes, occur within the Martian induced magnetosphere (IM). We present a statistical analysis of this phenomenon identified from proxy measurements of the electron flux derived from measurements by the Analyser of Space Plasmas and Energetic Neutral Atoms Electron Spectrometer experiment on board the Mars Express (MEX) spacecraft. The study is completed for the period of 9 February 2004 to 9 May 2014. Electron holes are observed within the IM in more than 56% of MEX orbits during this study period, occurring predominantly at altitudes less than 1300km, with the majority in the negative X Mars-Centric Solar Orbital direction. The spatial distribution above the surface of Mars is observed to bear close resemblance to that of the crustal magnetic fields as predicted by the Cain et al. [] magnetic field model, suggesting that they play an important role in the formation of these phenomena.

  • 47.
    Hall, B. E. S.
    et al.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Lester, M.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Sanchez-Cano, B.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Nichols, J. D.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Fränz, M.
    Max Planck Inst Solar Syst Res, Gottingen, Germany..
    Holmström, M.
    Swedish Inst Space Phys, Kiruna Div, Kiruna, Sweden..
    Ramstad, R.
    Swedish Inst Space Phys, Kiruna Div, Kiruna, Sweden..
    Witasse, O.
    Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy..
    Cartacci, M.
    European Space Agcy, Estec, Sci Support Off, Noordwijk, Netherlands..
    Cicchetti, A.
    European Space Agcy, Estec, Sci Support Off, Noordwijk, Netherlands..
    Noschese, R.
    European Space Agcy, Estec, Sci Support Off, Noordwijk, Netherlands..
    Orosei, R.
    Ist Nazl Astrofis, Ist Radioastron, Bologna, Italy..
    Annual variations in the Martian bow shock location as observed by the Mars Express mission2016Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 11, s. 11474-11494Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by similar to 0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39 R-M around aphelion and proceeds to a maximum of 2.65 R-M around perihelion, presenting an overall variation of similar to 11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of similar to 2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.

  • 48.
    Hamrin, M.
    et al.
    Umea Univ, Dept Phys, Umea, Sweden..
    Andersson, L.
    LASP, Boulder, CO USA..
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Pitkanen, T.
    Umea Univ, Dept Phys, Umea, Sweden..
    Gunell, H.
    Belgian Inst Space Aeron, Brussels, Belgium..
    The use of the power density for identifying reconnection regions2015Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 10, s. 8644-8662Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the vicinity of magnetic reconnection, magnetic energy is transferred into kinetic energy. A reconnection region hence corresponds to a load, and it should manifest itself as large and positive values of the power density, E<bold>J </bold>>> 0, where E is the electric field and J the current density. In this article we analyze Cluster plasma sheet data from 2001-2004 to investigate the use of the power density for identifying possible magnetic reconnection events from large sets of observed data. From theoretical arguments we show that an event with E<bold>J</bold>20pW/m(3) in the Earth's magnetotail observed by the Cluster instruments (X <- 10R(E) and |Y|less than or similar to 10RE) is likely to be associated with reconnection. The power density can be used as a primary indicator of potential reconnection regions, but selected events must be reviewed separately to confirm any possible reconnection signatures by looking for other signatures such as Hall electric and magnetic fields and reconnection jets. The power density can be computed from multispacecraft data, and we argue that the power density can be used as a tool for identifying possible reconnection events from large sets of data, e.g., from the Cluster and the Magnetospheric Multiscale missions.

  • 49. Hamrin, M.
    et al.
    Pitkanen, T.
    Norqvist, P.
    Karlsson, T.
    Nilsson, H.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Buchert, Stephan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Marghitu, O.
    Klecker, B.
    Kistler, L. M.
    Dandouras, I.
    Evidence for the braking of flow bursts as they propagate toward the Earth2014Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, nr 11, s. 9004-9018Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article we use energy conversion arguments to investigate the possible braking of flow bursts as they propagate toward the Earth. By using EJ data (E and J are the electric field and the current density) observed by Cluster in the magnetotail plasma sheet, we find indications of a plasma deceleration in the region -20 R-E < X < - 15 R-E. Our results suggest a braking mechanism where compressed magnetic flux tubes in so-called dipolarization fronts (DFs) can decelerate incoming flow bursts. Our results also show that energy conversion arguments can be used for studying flow braking and that the position of the flow velocity peak with respect to the DF can be used as a single-spacecraft proxy when determining energy conversion properties. Such a single-spacecraft proxy is invaluable whenever multispacecraft data are not available. In a superposed epoch study, we find that a flow burst with the velocity peak behind the DF is likely to decelerate and transfer energy from the particles to the fields. For flow bursts with the peak flow at or ahead of the DF we see no indications of braking, but instead we find an energy transfer from the fields to the particles. From our results we obtain an estimate of the magnitude of the deceleration of the flow bursts, and we find that it is consistent with previous investigations.

  • 50.
    Holmberg, M. K. G.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Shebanits, Oleg
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Wahlund, Jan-Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Morooka, Michiko
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Swedish Inst Space Phys, Uppsala, Sweden..
    Vigren, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andre, N.
    Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Garnier, P.
    Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Genot, V.
    Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Gilbert, L. K.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England..
    Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk2017Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 12, s. 12258-12273Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS = 60, 268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, n(max), is shown to be located at similar to 4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of n(max) is due to that the hot electron impact ionization rate peaks at similar to 4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.

123 1 - 50 av 111
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf