uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 500
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco;LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for High-Mass Resonances Decaying to tau nu in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 16, article id 161802Article in journal (Refereed)
    Abstract [en]

    A search for high-mass resonances decaying to tau nu using proton-proton collisions at root s = 13 TeV produced by the Large Hadron Collider is presented. Only tau-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible tau nu production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2-3.8 TeV depending on the coupling in the nonuniversal Go(221) model are excluded at the 95% credibility level.

  • 2. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the Inelastic Proton-Proton Cross Section at root s=13 TeV with the ATLAS Detector at the LHC2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 18, article id 182002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 mu b(-1) of pp collisions at a center-of-mass energy root s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07 <vertical bar eta vertical bar < 3.86) of the detector. A cross section of 68.1 +/- 1.4 mb is measured in the fiducial region. xi = M-X(2) > s > 10(-6), where M-X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this xi range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M-X > 13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1 +/- 2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

  • 3. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the Dimuon Decay of the Higgs Boson in pp Collisions at root s=13 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 5, article id 051802Article in journal (Refereed)
    Abstract [en]

    A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector in pp collisions at root s = 13 TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the pp collision data at root s = 7 TeV and root s = 8 TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

  • 4. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b¯b Using 36  fb−1 of pp Collisions at √s=13  TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 18, article id 181804Article in journal (Refereed)
    Abstract [en]

    Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a b¯b pair with the ATLAS detector using 36.1  fb−1 of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.

  • 5. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at root s=8 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 19, article id 191803Article in journal (Refereed)
    Abstract [en]

    A search for heavy pseudoscalar (A) and scalar (H) Higgs bosons decaying into a top quark pair (t (t) over bar) has been performed with 20.3 fb(-1) of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy root s = 8 TeV. Interference effects between the signal process and standard model t (t) over bar production, which are expected to distort the signal shape from a single peak to a peak-dip structure, are taken into account. No significant deviation from the standard model prediction is observed in the t (t) over bar invariant mass spectrum in final states with an electron or muon, large missing transverse momentum, and at least four jets. The results are interpreted within the context of a type-II two-Higgs-doublet model. Exclusion limits on the signal strength are derived as a function of the mass m(A/H) and the ratio of the vacuum expectation values of the two Higgs fields, tan beta, for m(A/H) > 500 GeV.

  • 6. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 11, article id 111802Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained.

  • 7.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco;LPTPM, Oujda, Morocco.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 21, article id 211802Article in journal (Refereed)
    Abstract [en]

    A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH -> l(+)l(-) cc is studied. A data set with an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13TeV recorded by the ATLAS experiment at the LHC is used. The H -> cc signature is identified using charm-tagging algorithms. The observed (expected) upper limit on sigma(pp -> ZH) x B(H -> cc) is 2.7 (3.9(-2.1)(+2.1) ) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

  • 8. Aad, G.
    et al.
    Aloisio, A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Scalar Charm Quark Pair Production in pp Collisions at root s=8 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 16, article id UNSP 161801Article in journal (Refereed)
    Abstract [en]

    The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb(-1) of pp collisions at root s = 8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal super-symmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.

  • 9. Aad, G.
    et al.
    Belanger-Champagne, Camille
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelof, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hansen, C. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in root s=7 TeV pp collisions at the LHC2011In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 106, no 25, p. 251801-Article in journal (Refereed)
    Abstract [en]

    This Letter presents the first search for a heavy particle decaying into an e(+/-)mu(-/+) final state in root s = 7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35 pb(-1). No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except lambda(311)' = 0.11 and lambda(312) = 0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70-1.00 TeV and corresponding cross sections times branching ratios of 0.175-0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z's than previous constraints from the Tevatron.

  • 10. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at root s=8 TeV Measured with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 22, article id 221802Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of root s = 8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb(-1). The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

  • 11. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Combined Measurement of the Higgs Boson Mass in pp Collisions at root s=7 and 8 TeV with the ATLAS and CMS Experiments2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 19, article id 191803Article in journal (Refereed)
    Abstract [en]

    A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H --> gamma gamma and H --> ZZ --> 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m(H) = 125.09 +/- 0.21 (stat) +/- 0.11 (syst) GeV.

  • 12. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence of W gamma gamma Production in pp Collisions at root s=8 TeV and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 3, article id 031802Article in journal (Refereed)
    Abstract [en]

    This Letter reports evidence of triple gauge boson production pp -> W(l nu)gamma gamma + X, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb(-1), collected by the ATLAS detector in 2012. Events are selected using the W boson decay to e nu or mu nu as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.

  • 13. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay H-+/- -> W(+/-)Z using pp Collisions at root S=8 TeV with the ATLAS Experiment2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 23, article id 231801Article in journal (Refereed)
    Abstract [en]

    A search for a charged Higgs boson, H-+/-, decaying to a W-+/- boson and a Z boson is presented. The search is based on 20.3 fb(-1) of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The H-+/- boson is assumed to be produced via vector-boson fusion and the decays W-+/- -> q (q') over bar and Z -> e(+)e(-)/mu(+)mu(-) are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an H+ boson is observed. Upper limits of 31-1020 fb at 95% C.L. are placed on the cross section for vector-boson fusion production of an H-+/- boson times its branching fraction to W(+/-)Z. The limits are compared with predictions from the Georgi-Machacek Higgs triplet model.

  • 14. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Determination of the Ratio of b-Quark Fragmentation Fractions f(s)/f(d) in pp Collisions at root s=7 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 26, article id 262001Article in journal (Refereed)
    Abstract [en]

    With an integrated luminosity of 2.47 fb(-1) recorded by the ATLAS experiment at the LHC, the exclusive decays B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) of B mesons produced in pp collisions at root s = 7 TeV are used to determine the ratio of fragmentation fractions f(s)/f(d). From the observed B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) yields, the quantity (f(s)/f(d))[B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0) )] is measured to be 0.199 +/- 0.004(stat) +/- 0.008(syst). Using a recent theory prediction for [B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0))] yields (f(s)/f(d)) = 0.240 +/- 0.004(stat) +/- 0.010(syst) +/- 0.017(th). This result is based on a new approach that provides a significant improvement of the world average.

  • 15. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the ZZ Production Cross Section in pp Collisions at root s=13 TeV with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 10, article id 101801Article in journal (Refereed)
    Abstract [en]

    The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb(-1) of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7(-2.0)(+2.2) (stat)(-0.7)(+0.9) (syst)(-0.7)(+1.0) (lumi) pb. The results agree with standard model predictions.

  • 16. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Long-Range Elliptic Azimuthal Anisotropies in √s=13 and 2.76 TeV pp Collisions with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 17Article in journal (Refereed)
    Abstract [en]

    ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Delta phi, and pseudorapidity, Delta eta, in root s = 13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval vertical bar eta vertical bar < 2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Delta phi similar to 0 that extends over a wide range of Delta eta, which has been referred to as the "ridge." Per-trigger-particle yields, Y(Delta phi) are measured over 2 < vertical bar Delta eta vertical bar < 5. For both collision energies, the Y(Delta phi) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 2 phi reconstructed tracks, and a constant combinatoric contribution modulated by cos (2 Delta phi). The fitted Fourier coefficient, nu(2,2), exhibits factorization, suggesting that the ridge results from per-event cos (2 phi) modulation of the single-particle distribution with Fourier coefficients nu(2). The nu(2) values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p(T) dependence similar to that measured in p + Pb and Pb + Pb collisions. The nu(2) values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p + Pb collisions, and that the dynamics responsible for the ridge has no strong root s dependence.

  • 17. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sato, K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at root s=8 TeV with the ATLAS Detecto2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 13, article id 131801Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton-proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb(-1) have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected standard model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the standard model featuring dark-matter candidates.

  • 18. Aad, G.
    et al.
    Bergeås Kuutmaan, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H -> gamma gamma and H -> ZZ* -> 4l Decay Channels at root s=8 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 9, article id 091801Article in journal (Refereed)
    Abstract [en]

    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb(-1) of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of root s = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H -> gamma gamma and H -> ZZ*. 4l event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be sigma(pp -> H) = 33.0 +/- 5.3 (stat) +/- 1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.

  • 19. Aad, G.
    et al.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Higgs and Z Boson Decays to J/psi gamma and Upsilon(nS)gamma with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 12, article id 121801Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to J/psi gamma and Upsilon(nS)gamma (n = 1,2,3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3 fb(-1) collected at root s = 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the J/psi gamma final state the limits are 1.5 x 10(-3) and 2.6 x 10(-6) for the Higgs and Z boson decays, respectively, while in the Upsilon(1S, 2S, 3S)gamma. final states the limits are (1.3, 1.9, 1.3) x 10(-3) and (3.4, 6.5, 5.4) x 10(-6), respectively.

  • 20. Aad, G.
    et al.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Heavy Neutral Particle Decaying to e mu, e tau, or mu tau in pp Collisions at root s=8 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 3, article id 031801Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for a heavy neutral particle decaying into an opposite-sign different-flavor dilepton pair, e(+/-) mu(-/+), e(+/-) tau(-/+), or mu(+/-) tau(-/+) using 20.3 fb(-1) of pp collision data at root s = 8 TeV collected by the ATLAS detector at the LHC. The numbers of observed candidate events are compatible with the standard model expectations. Limits are set on the cross section of new phenomena in two scenarios: the production of (nu) over tilde (tau) in R-parity-violating supersymmetric models and the production of a lepton-flavor-violating Z' vector boson.

  • 21. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, C. P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of an Excited B-c(+/-) Meson State with the ATLAS Detector2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 113, no 21, p. 212004-Article in journal (Refereed)
    Abstract [en]

    A search for excited states of the B-c(+/-) meson is performed using 4.9 fb(-1) of 7 TeV and 19.2 fb(-1) of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decayB(c)(+/-) -> J/psi pi(+/-). The state appears in the m(B-c(+/-)pi(+)pi(-)) - m(B-c(+/-)) - 2m(pi(+/-)) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842 +/- 4 +/- 5 MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S-wave state of the B-c(+/-) meson, B-c(+/-)(2S).

  • 22. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, no 20, p. 201802-Article in journal (Refereed)
    Abstract [en]

    A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in 4.5 fb(-1) (20.3 fb(-1)) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < m(H) < 400 GeV, produced in association with a Z boson and decaying to invisible particles.

  • 23. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the Azimuthal Angle Dependence of Inclusive Jet Yields in Pb plus Pb Collisions at root s(NN)=2.76 TeV with the ATLAS Detector2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 111, no 15, p. 152301-Article in journal (Refereed)
    Abstract [en]

    Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Δϕ, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Δϕ dependence of jet yields in 0.14  nb-1 of √sNN=2.76  TeV Pb+Pb collisions at the LHC for jet transverse momenta pT>45   GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Δϕ was characterized by the parameter, v2jet, and the ratio of out-of-plane (Δϕπ/2) to in-plane (Δϕ∼0) yields. Nonzero v2jet values were measured in all centrality bins for pT<160  GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.

  • 24. Aad, G
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L
    Measurement of Top Quark Polarization in Top-Antitop Events from Proton-Proton Collisions at root s=7 TeV Using the ATLAS Detector2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 111, no 23, p. 232002-Article in journal (Refereed)
    Abstract [en]

    This Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4: 7 fb(-1) of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at root s = 7 TeV. Final states containing one or two isolated leptons ( electrons or muons) and jets are considered. Two measurements of alpha P-l, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, alpha P-l(CPC) = -0: 035 +/- 0: 014(stat) +/- 0: 037(syst) and alpha P-l(CPV) = 0: 020 +/- 0: 016(stat)(-0.017)(+0.013)(syst), are in good agreement with the standard model prediction of negligible top quarkpolarization.

  • 25. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Associated Near-Side and Away-Side Long-Range Correlations in root S-NN=5.02 TeV Proton-Lead Collisions with the ATLAS Detector2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110, no 18, p. 182302-Article in journal (Refereed)
    Abstract [en]

    Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).

  • 26. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in pp Collisions at root s=8 TeV with the ATLAS Detector2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, no 4, p. 041802-Article in journal (Refereed)
    Abstract [en]

    A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at root s = 8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.

  • 27. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Quantum Black Hole Production in High-Invariant-Mass Lepton plus Jet Final States Using pp Collisions at root s=8 TeV and the ATLAS Detector2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, no 9, p. 091804-Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for quantum black-hole production using 20.3 fb(-1) of data collected with the ATLAS detector in pp collisions at the LHC at root s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton + jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.

  • 28. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence for Electroweak Production of W(+/-)W(+/-)jj in pp Collisions at root s=8 TeV with the ATLAS Detector2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 113, no 14, p. 141803-Article in journal (Refereed)
    Abstract [en]

    This Letter presents the first study of WWjj, same-electric-charge diboson production in associationwith two jets, using 20.3 fb−1 of proton-proton collision data at ffiffiffis p ¼ 8 TeV recorded by the ATLASdetector at the Large Hadron Collider. Events with two reconstructed same-charge leptons (ee, eμ,and μμ) and two or more jets are analyzed. Production cross sections are measured in two fiducialregions, with different sensitivities to the electroweak and strong production mechanisms. First evidencefor WWjj production and electroweak-only WWjj production is observed with a significance of 4.5and 3.6 standard deviations, respectively. The measured production cross sections are in agreement withstandard model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings.

  • 29. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of Four-Lepton Production at the Z Resonance in pp Collisions at root s=7 and 8 TeV with ATLAS2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, no 23, p. UNSP 231806-Article in journal (Refereed)
    Abstract [en]

    Measurements of four-lepton (4l, l = e,mu) production cross sections at the Z resonance in pp collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass regions m (l+l)- > 5 GeV and 80 < m(4l) < 100 GeV, the measured cross sections are 76 +/- 18(stat) +/- 4(syst) +/- 1.4(lumi) fb and 107 +/- 9(stat) +/- 4(syst) +/- 3.0(lumi) fb at root s=7 and 8 TeV, respectively. By subtracting the nonresonant 4l production contributions and normalizing with Z -> mu(+)mu(-) events, the branching fraction for the Z boson decay to 4l is determined to be (3.20 +/- 0.25(stat) +/- 0.13(syst)) x10(-6), consistent with the standard model prediction.

  • 30. Aad, G
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Coniavitis, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L
    Measurement of Z Boson Production in Pb-Pb Collisions at root s(NN)=2.76 TeV with the ATLAS Detector2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110, no 2, p. 022301-Article in journal (Refereed)
    Abstract [en]

    The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 nb(-1) of integrated luminosity obtained in the 2011 LHC Pb + Pb run at root s(NN) = 2.76 TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

  • 31. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Higgs Boson Pair Production in the gamma gamma b(b)over-bar Final State Using pp Collision Data at root s=8 TeV from the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 8, article id 081802Article in journal (Refereed)
    Abstract [en]

    Searches are performed for resonant and nonresonant Higgs boson pair production in the γγbb¯ final state using 20  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of nonresonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow X→hh resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.

  • 32. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of the Nuclear Modification Factor for Jets in Pb plus Pb Collisions at root SNN=2.76 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 7, article id 072302Article in journal (Refereed)
    Abstract [en]

    Measurements of inclusive jet production are performed in pp and Pb + Pb collisions at root SNN = 2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb(-1), respectively. The jets are identified with the anti-k(t) algorithm with R = 0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32 < pT < 500 GeV and absolute rapidity |y| < 2.1 and as a function of collision centrality. The nuclear modification factor R-AA is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to pp collisions. The RAA shows a slight increase with pT and no significant variation with rapidity.

  • 33. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at root s=8 TeV2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 113, no 17, p. UNSP 171801-Article in journal (Refereed)
    Abstract [en]

    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65-600 GeV is performed using 20.3 fb(-1) of root s = 8 TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

  • 34. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Supersymmetric Partner to the Top Quark in Final States with Jets and Missing Transverse Momentum at root s=7 TeV with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 21, p. 211802-Article in journal (Refereed)
    Abstract [en]

    A search for direct pair production of supersymmetric top squarks ((t) over tilde (1)) is presented, assuming the (t) over tilde (1) decays into a top quark and the lightest supersymmetric particle, (chi) over tilde (0)(1), and that both top quarks decay to purely hadronic final states. A total of 16 (4) events are observed compared to a predicted standard model background of 13.5(-3.6)(+3.7) (4.4(-1.3)(+1.7)) events in two signal regions based on integral Ldt = 4.7 fb(-1) of pp collision data taken at root s = 7 TeV with the ATLAS detector at the LHC. An exclusion region in the (t) over tilde (1) versus (chi) over tilde (0)(1) mass plane is evaluated: 370 < m(<(t)over tilde>1) < 465 GeV is excluded for m(<(chi)over tilde>10) similar to 0 GeV while m((t) over tilde1) = 445 GeV is excluded for m((chi) over tilde 10) <= 50 GeV.

  • 35. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter Candidates and Large Extra Dimensions in Events with a Photon and Missing Transverse Momentum in pp Collision Data at root s=7 TeV with the ATLAS Detector2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110, no 1, p. 011802-Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at root s = 7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb(-1) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.

  • 36. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Direct Top Squark Pair Production in Final States with One Isolated Lepton, Jets, and Missing Transverse Momentum in √s=7  TeV pp Collisions Using 4.7  fb-1 of ATLAS Data2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 21, p. 211803-Article in journal (Refereed)
    Abstract [en]

    A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at √s=7  TeV. The measurement is based on 4.7  fb-1 of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with standard model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.

  • 37. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Magnetic Monopoles in root s=7 TeV pp Collisions with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 26, p. 261803-Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb(-1) of pp collisions recorded at a center-of-mass energy root s = 7 TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/epsilon fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where epsilon is the monopole reconstruction efficiency. The efficiency epsilon is high and uniform in the fiducial region given by pseudorapidity vertical bar eta vertical bar < 1: 37 and transverse kinetic energy 600-700<E-kin sin theta< 1400 GeV. The minimum value of 700 GeV is for monopoles of mass 200 GeV, whereas the minimum value of 600 GeV is applicable for higher mass monopoles. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb in this fiducial region. Assuming the kinematic distributions from Drell-Yan pair production of spin-1= 2 Dirac magnetic monopoles, the efficiency is in the range 1%-10%, leading to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV. This limit is weaker than the fiducial limit because most of these monopoles lie outside the fiducial region.

  • 38. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Pair Production of a New b ' Quark that Decays into a Z Boson and a Bottom Quark with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 7, p. 071801-Article in journal (Refereed)
    Abstract [en]

    A search is reported for the pair production of a new quark b' with at least one b' decaying to a Z boson and a bottom quark. The data, corresponding to 2.0 fb(-1) of integrated luminosity, were collected from pp collisions at root s = 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. Using events with a b-tagged jet and a Z boson reconstructed from opposite-charge electrons, the mass distribution of large transverse momentum b' candidates is tested for an enhancement. No evidence for a b' signal is detected in the observed mass distribution, resulting in the exclusion at a 95% confidence level of b' quarks with masses m(b)' < 400 GeV that decay entirely via b' -> Z + b. In the case of a vectorlike singlet b' mixing solely with the third standard model generation, masses m(b)' < 358 GeV are excluded.

  • 39. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Supersymmetry in Events with Three Leptons and Missing Transverse Momentum in root s=7 TeV pp Collisions with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 26, p. 261804-Article in journal (Refereed)
    Abstract [en]

    A search for the weak production of charginos and neutralinos decaying to a final state with three leptons (electrons or muons) and missing transverse momentum is presented. The analysis uses 2.06 fb(-1) of root s = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV. 

  • 40. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for tb Resonances in Proton-Proton Collisions at root s=7 TeV with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 8, p. 081801-Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for tb resonances in 1.04 fb(-1) of LHC proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 7 TeV. Events with a lepton, missing transverse momentum, and two jets are selected and the invariant mass of the corresponding final state is reconstructed. The search exploits the shape of the tb invariant mass distribution compared to the expected standard model backgrounds. The model of a right-handed W'(R) with standard model-like couplings is chosen as the benchmark model for this search. No statistically significant excess of events is observed in the data, and upper limits on the cross section times the branching ratio of W'(R) resonances at 95% C.L. lie in the range of 6.1-1.0 pb for W'(R) masses ranging from 0.5 to 2.0 TeV. These limits are translated into a lower bound on the allowed right-handed W'(R) mass, giving mW'(R) > 1.13 TeV at 95% C.L.

  • 41. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Determination of the Strange-Quark Density of the Proton from ATLAS Measurements of the W -> lv and Z -> ll Cross Sections2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 1, p. 012001-Article in journal (Refereed)
    Abstract [en]

    AQCD analysis is reported of ATLAS data on inclusive W-+/- and Z boson production in pp collisions at the LHC, jointly with ep deep-inelastic scattering data from HERA. The ATLAS data exhibit sensitivity to the light quark sea composition and magnitude at Bjorken x similar to 0:01. Specifically, the data support the hypothesis of a symmetric composition of the light quark sea at low x. The ratio of the strange-to-down sea quark distributions is determined to be 1:00(-0:28)(+0.25) at absolute four-momentum transfer squared Q(2) = 1: 9 GeV2 and x = 0: 023.

  • 42. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of a New chi(b) State in Radiative Transitions to Y(1S) and Y(2S) at ATLAS2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 15, p. 152001-Article in journal (Refereed)
    Abstract [en]

    The chi(b)(np) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at root s=7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb(-1), these states are reconstructed through their radiative decays to Y(1S,2S) with Y ->mu(+)mu(-). In addition to the mass peaks corresponding to the decay modes chi(b)(1P,2P)-> Y(1S)gamma, a new structure centered at a mass of 10.530 +/- 0.005(stat)+/- 0.009(syst) GeV is also observed, in both the Y(1S)gamma and Y(2S)gamma decay modes. This structure is interpreted as the chi(b)(3P) system.

  • 43. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Spin Correlation in t(t)over-bar Events from pp Collisions at root s=7 TeV Using the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 21, p. 212001-Article in journal (Refereed)
    Abstract [en]

    A measurement of spin correlation in t (t) over bar production is reported using data collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 2.1 fb(-1). Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. The difference in azimuthal angle between the two charged leptons in the laboratory frame is used to extract the correlation between the top and antitop quark spins. In the helicity basis the measured degree of correlation corresponds to A(helicity) = 0.40(-0.08)(+0.09), in agreement with the next-to-leading-order standard model prediction. The hypothesis of zero spin correlation is excluded at 5.1 standard deviations.

  • 44. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Light Higgs Boson Decaying to Long-Lived Weakly Interacting Particles in Proton-Proton Collisions at root s=7 TeV with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 25, p. 251801-Article in journal (Refereed)
    Abstract [en]

    A search for the decay of a light Higgs boson (120-140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb(-1) of proton-proton collisions at root s = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length. 

  • 45. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Down-Type Fourth Generation Quarks with the ATLAS Detector in Events with One Lepton and Hadronically Decaying W Bosons2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 3, p. 032001-Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for pair production of heavy down-type quarks decaying via b' -> Wt in the lepton + jets channel, as b'(b) over bar' -> W(-)tW(+)(t) over bar -> b (b) over barW(+)W(-)W(+)W- -> l(+/-) nu b (b) over barq (q) over barq (q) over barq ($) over barq. In addition to requiring exactly one lepton, large missing transverse momentum, and at least six jets, the invariant mass of nearby jet pairs is used to identify high transverse momentum W bosons. In data corresponding to an integrated luminosity of 1.04 fb(-1) from pp collisions at root s = 7 TeV recorded with the ATLAS detector, a heavy down-type quark with mass less than 480 GeV can be excluded at the 95% confidence level.

  • 46. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Gluinos in Events with Two Same-Sign Leptons, Jets, and Missing Transverse Momentum with the ATLAS Detector in pp Collisions at root s=7 TeV2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 24, p. 241802-Article in journal (Refereed)
    Abstract [en]

    A search is presented for gluinos decaying via the supersymmetric partner of the top quark using events with two same-sign leptons, jets, and missing transverse momentum. The analysis is performed with 2: 05 fb(-1) of integrated luminosity from pp collisions at root s = 7 TeV collected by the ATLAS detector at the LHC. No excess beyond the standard model expectation is observed, and exclusion limits are derived for simplified models where the gluino decays via the supersymmetric partner of the top quark and in the minimal supergravity and constrained minimal supersymmetric standard model framework. In those scenarios, gluino masses below 550 GeV are excluded at 95% C.L. within the parameter space considered, significantly extending the coverage with respect to existing limits. Depending on the model parameters, gluino masses up to 750 GeV can also be excluded at 95% C.L.

  • 47. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Pair Production of a Heavy Up-Type Quark Decaying to a W Boson and a b Quark in the lepton plus jets Channel with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 26, p. 261802-Article in journal (Refereed)
    Abstract [en]

    A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming subsequent decay to a W boson and a b quark, t'(t) over bar' -> W(+)bW(-)(b) over bar. The search is based on 1.04 fb(-1) of proton-proton collisions at root s = 7 TeV collected by the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton + jets final state, characterized by a high transverse momentum isolated electron or muon, high missing transverse momentum, and at least three jets. No significant excess of events above the background expectation is observed. A 95% C.L. lower limit of 404 GeV is set for the mass of the t' quark.

  • 48. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Production of Resonant States in the Photon-Jet Mass Distribution Using pp Collisions at root s=7 TeV Collected by the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 21, p. 211802-Article in journal (Refereed)
    Abstract [en]

    This Letter describes a model-independent search for the production of new resonant states in photon + jet events in 2.11 fb(-1) of proton-proton collisions at root s = 7 TeV. We compare the photon + jet mass distribution to a background model derived from data and find consistency with the background-only hypothesis. Given the lack of evidence for a signal, we set 95% credibility level limits on generic Gaussian-shaped signals and on a benchmark excited-quark (q*) model, excluding 2 TeV Gaussian resonances with cross section times branching fraction times acceptance times efficiency near 5 fb and excluding q* masses below 2.46 TeV, respectively.

  • 49. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Scalar Bottom Quark Pair Production with the ATLAS Detector in pp Collisions at root s=7 TeV2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 18, p. 181802-Article in journal (Refereed)
    Abstract [en]

    The results of a search for pair production of the scalar partners of bottom quarks in 2: 05 fb(-1) of pp collisions at root s = 7 TeV using the ATLAS experiment are reported. Scalar bottom quarks are searched for in events with large missing transverse momentum and two jets in the final state, where both jets are identified as originating from a bottom quark. In an R-parity conserving minimal supersymmetric scenario, assuming that the scalar bottom quark decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits are obtained in the (b) over tilde (1) - (chi) over tilde (0)(1) mass plane such that for neutralino masses below 60 GeV scalar bottom masses up to 390 GeV are excluded.

  • 50. Aad, G.
    et al.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the Higgs Boson in the H -> WW(*()) -> l(+)vl(-)(v)over-bar Decay Channel in pp Collisions at root s=7 TeV with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 108, no 11, p. 111802-Article in journal (Refereed)
    Abstract [en]

    A search for the Higgs boson has been performed in the H -> WW(*()) -> l+vl-(v) over bar channel (l = e/mu) with an integrated luminosity of 2.05 fb(-1) of pp collisions at root s = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 110 GeV< m(H) < 300 GeV. The observations exclude the presence of a standard model Higgs boson with a mass 145 < m(H) < 206 GeV at 95% confidence level.

1234567 1 - 50 of 500
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf