Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
1234567 1 - 50 of 702
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zhang, Z.
    Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 122, no 23, article id 231801Article in journal (Refereed)
    Abstract [en]

    Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H -> invisible decays where H is produced according to the standard model via vector boson fusion, Z(ll)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb(-1) of pp collisions at a center-of-mass energy of root s = 13 TeV at the LHC. In combination with the results at root s = 7 and 8 TeV, an exclusion limit on the H -> invisible branching ratio of 0.26(0.17(-0.05)(+0.07)) at 95% confidence level is observed (expected).

    Download full text (pdf)
    fulltext
  • 2.
    Aaboud, M.
    et al.
    LPTPM, Oujda, Morocco;Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany..
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Higgs Boson Decays into a Z Boson and a Light Hadronically Decaying Resonance Using 13 TeV pp Collision Data from the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 125, no 22, article id 221802Article in journal (Refereed)
    Abstract [en]

    A search for Higgs boson decays into a Z boson and a light resonance in two-lepton plus jet events is performed, using a pp collision dataset with an integrated luminosity of 139 fb(-1) collected at root s = 13 TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95% confidence-level upper limits are set on the Riggs boson production cross section times branching fraction to a Z boson and the signal resonance, with values in the range 17-340 pb (16(-5)(+6)-320(-90)(+130) pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 and 100 pb (100(-30)(+40) and 100(-30)(+40) pb) for the eta(c) and J/psi hypotheses, respectively.

    Download full text (pdf)
    FULLTEXT01
  • 3. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Comparison of Fragmentation Functions for Jets Dominated by Light Quarks and Gluons from pp and Pb plus Pb Collisions in ATLAS2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, no 4, article id 042001Article in journal (Refereed)
    Abstract [en]

    Charged-particle fragmentation functions for jets azimuthally balanced by a high-transverse-momentum, prompt, isolated photon are measured in 25 pb(-1) of pp and 0.49 nb(-1) of Pb + Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The measurements are compared to predictions of Monte Carlo generators and to measurements of inclusively selected jets. In pp collisions, a different jet fragmentation function in photon-tagged events from that in inclusive jet events arises from the difference in fragmentation between light quarks and gluons. The ratios of the fragmentation functions in Pb + Pb events to that in pp events are used to explore the parton color-charge dependence of jet quenching in the hot medium. In relatively peripheral collisions, fragmentation functions exhibit a similar modification pattern for photon-tagged and inclusive jets. However, photon-tagged jets are observed to have larger modifications than inclusive jets in central Pb + Pb events.

    Download full text (pdf)
    fulltext
  • 4. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Centrality-Dependent Acoplanarity for Muon Pairs Produced via Two-Photon Scattering in Pb plus Pb Collisions at root s(NN)=5.02 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 212301Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of gamma gamma -> mu(+)mu(-)- production in Pb + Pb collisions recorded by the ATLAS detector at the Large Hadron Collider at root s(NN) = 5.02 TeV with an integrated luminosity of 0.49 nb(-1). The azimuthal angle and transverse momentum correlations between the muons are measured as a function of collision centrality. The muon pairs are produced from gamma gamma through the interaction of the large electromagnetic fields of the nuclei. The contribution from background sources of muon pairs is removed using a template fit method. In peripheral collisions, the muons exhibit a strong back-to-back correlation consistent with previous measurements of muon pair production in ultraperipheral collisions. The angular correlations are observed to broaden significantly in central collisions. The modifications arc qualitatively consistent with rescattering of the muons while passing through the hot matter produced in the collision.

    Download full text (pdf)
    fulltext
  • 5. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Combination of the Searches for Pair-Produced Vectorlike Partners of the Third-Generation Quarks at √s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 211801Article in journal (Refereed)
    Abstract [en]

    A combination of the searches for pair-produced vectorlike partners of the top and bottom quarks in various decay channels (T -> Zt/Wb/Ht, B -> Zb/Wt/Hb) is performed using 36.1 fb(-1) of pp collision data at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the standard model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross section for a range of vectorlike quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vectorlike quarks decay to standard model particles. A singlet T is excluded for masses below 1.31 TeV and a singlet B is excluded for masses below 1.22 TeV. Assuming a weak isospin (T, B) doublet and vertical bar V-Tb vertical bar << vertical bar V-tB vertical bar, T and B masses below 1.37 TeV are excluded.

    Download full text (pdf)
    fulltext
  • 6. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Resonant and Nonresonant Higgs Boson Pair Production in the b(b)over-bar tau(+) tau(-) Decay Channel in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 19, article id 191801Article in journal (Refereed)
    Abstract [en]

    A search for resonant and nonresonant pair production of Higgs bosons in the b (b) over bar tau(+)tau(-) final state is presented. The search uses 36.1 fb(-1) of pp collision data with root s = 13 TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. Decays of the tau-lepton pairs with at least one tau lepton decaying to final states with hadrons and a neutrino are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for nonresonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the standard model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances X in the mass range 305 GeV < m(X) < 402 GeV in the simplified hMSSM minimal supersymmetric model for tan beta = 2 and excluding bulk Randall-Sundrum gravitons G(KK) in the mass range 325 GeV < m(GKK) < 885 GeV for k/(M) over bar P-1 = 1.

    Download full text (pdf)
    fulltext
  • 7. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the Production of a Long-Lived Neutral Particle Decaying within the ATLAS Hadronic Calorimeter in Association with a Z Boson from pp Collisions at √s=13 TeV2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 122, no 15, article id 151801Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for the production of a long-lived neutral particle (Zd) decaying within the ATLAS hadronic calorimeter, in association with a standard model (SM) Z boson produced via an intermediate scalar boson, where Z → l+l- (l = e, μ). The data used were collected by the ATLAS detector during 2015 and 2016 pp collisions with a center-of-mass energy of √s = 13 TeV at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 ± 0.8 fb-1. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its c τ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a c τ approximately between 0.1 and 7 m is excluded with a 95% confidence level up to 10% for mzd between 5 and 15 GeV.

    Download full text (pdf)
    fulltext
  • 8. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Electroweak Production of a Same-Sign W Boson Pair in Association with Two Jets in pp Collisions root s=13 TeV with the ATLAS Detector2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, no 16, article id 161801Article in journal (Refereed)
    Abstract [en]

    This Letter presents the observation and measurement of electroweak production of a same-sign W boson pair in association with two jets using 36.1 fb(-1) of proton-proton collision data recorded at a centerof-mass energy root s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of 69 +/- 7 events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is sigma(f)(id) = 2.89(-0.48)(+0.51)(stat)(-0.28)(+0.29)(syst) fb.

    Download full text (pdf)
    FULLTEXT01
  • 9. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 15, article id 152002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a W boson and a b-quark are significant. Events with exactly two leptons (ee, mu mu, or e mu) and two b-tagged jets that satisfy a multiparticle invariant mass requirement are selected from 36.1 fb(-1) of protonproton collision data taken at root s = 13 TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within 2 sigma of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

    Download full text (pdf)
    fulltext
  • 10. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in pp Collisions at √s=13  TeV2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 8, article id 081801Article in journal (Refereed)
    Abstract [en]

    Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from standard model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450-1800 GeV. The analyzed data set has an integrated luminosity of up to 29.3 fb(-1) and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

    Download full text (pdf)
    fulltext
  • 11. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of Azimuthal Anisotropy of Muons from Charm and Bottom Hadrons in pp Collisions at root s=13 TeV with the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 124, no 8, article id 082301Article in journal (Refereed)
    Abstract [en]

    The elliptic flow of muons from the decay of charm and bottom hadrons is measured in pp collisions at root s = 13 TeV using a data sample with an integrated luminosity of 150 pb(-1) recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range vertical bar eta vertical bar < 2.4. A significant nonzero elliptic anisotropy coefficient nu(2) is observed for muons from charm decays, while the nu(2) value for muons from bottom decays is consistent with zero within uncertainties.

    Download full text (pdf)
    FULLTEXT01
  • 12.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco;LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for High-Mass Resonances Decaying to tau nu in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 16, article id 161802Article in journal (Refereed)
    Abstract [en]

    A search for high-mass resonances decaying to tau nu using proton-proton collisions at root s = 13 TeV produced by the Large Hadron Collider is presented. Only tau-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible tau nu production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2-3.8 TeV depending on the coupling in the nonuniversal Go(221) model are excluded at the 95% credibility level.

    Download full text (pdf)
    fulltext
  • 13. Aaboud, M.
    et al.
    Bergeaas Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the Inelastic Proton-Proton Cross Section at root s=13 TeV with the ATLAS Detector at the LHC2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 18, article id 182002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 mu b(-1) of pp collisions at a center-of-mass energy root s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07 <vertical bar eta vertical bar < 3.86) of the detector. A cross section of 68.1 +/- 1.4 mb is measured in the fiducial region. xi = M-X(2) > s > 10(-6), where M-X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this xi range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M-X > 13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1 +/- 2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

    Download full text (pdf)
    fulltext
  • 14. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the Dimuon Decay of the Higgs Boson in pp Collisions at root s=13 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 5, article id 051802Article in journal (Refereed)
    Abstract [en]

    A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector in pp collisions at root s = 13 TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the pp collision data at root s = 7 TeV and root s = 8 TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

    Download full text (pdf)
    fulltext
  • 15. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b¯b Using 36  fb−1 of pp Collisions at √s=13  TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 18, article id 181804Article in journal (Refereed)
    Abstract [en]

    Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a b¯b pair with the ATLAS detector using 36.1  fb−1 of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.

    Download full text (pdf)
    fulltext
  • 16. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at root s=8 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 19, article id 191803Article in journal (Refereed)
    Abstract [en]

    A search for heavy pseudoscalar (A) and scalar (H) Higgs bosons decaying into a top quark pair (t (t) over bar) has been performed with 20.3 fb(-1) of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy root s = 8 TeV. Interference effects between the signal process and standard model t (t) over bar production, which are expected to distort the signal shape from a single peak to a peak-dip structure, are taken into account. No significant deviation from the standard model prediction is observed in the t (t) over bar invariant mass spectrum in final states with an electron or muon, large missing transverse momentum, and at least four jets. The results are interpreted within the context of a type-II two-Higgs-doublet model. Exclusion limits on the signal strength are derived as a function of the mass m(A/H) and the ratio of the vacuum expectation values of the two Higgs fields, tan beta, for m(A/H) > 500 GeV.

    Download full text (pdf)
    fulltext
  • 17. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 11, article id 111802Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained.

    Download full text (pdf)
    fulltext
  • 18.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco;LPTPM, Oujda, Morocco.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 21, article id 211802Article in journal (Refereed)
    Abstract [en]

    A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH -> l(+)l(-) cc is studied. A data set with an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13TeV recorded by the ATLAS experiment at the LHC is used. The H -> cc signature is identified using charm-tagging algorithms. The observed (expected) upper limit on sigma(pp -> ZH) x B(H -> cc) is 2.7 (3.9(-2.1)(+2.1) ) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

    Download full text (pdf)
    fulltext
  • 19. Aaboud, M.
    et al.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Structure in the B-s(0) pi(+/-) Invariant Mass Spectrum with the ATLAS Experiment2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 20, article id 202007Article in journal (Refereed)
    Abstract [en]

    A search for the narrow structure, X(5568), reported by the DO Collaboration in the decay sequence X -> B-s(0) pi +/-, B-s(0) -> J/psi phi, is presented. The analysis is based on a data sample recorded with the ATLAS detector at the LHC corresponding to 4.9 fb(-1) of pp collisions at 7 TeV and 19.5 fb(-1)at 8 TeV. No significant signal was found. Upper limits on the number of signal events, with properties corresponding to those reported by DO, and on the A production rate relative to B-s(0) mesons, rho x, were determined at 95% confidence level. The results are N(X) < 382 and rho x <0.015 for B-s(0) mesons with transverse momenta above 10 GeV and N(X) < 356 and rho(x) < 0.016 for transverse momenta above 15 GeV. Limits are also set for potential B-s(0) pi(+) resonances in the mass range 5550 to 5700 MeV.

    Download full text (pdf)
    fulltext
  • 20.
    Aaboud, M.
    et al.
    Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland .
    Measurement of the Soft-Drop Jet Mass in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 9, article id 092001Article in journal (Refereed)
    Abstract [en]

    Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log(10)rho(2), where rho is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb(-1) of root s = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

    Download full text (pdf)
    fulltext
  • 21. Aad, G.
    et al.
    Aloisio, A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Scalar Charm Quark Pair Production in pp Collisions at root s=8 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 16, article id UNSP 161801Article in journal (Refereed)
    Abstract [en]

    The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb(-1) of pp collisions at root s = 8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal super-symmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.

    Download full text (pdf)
    fulltext
  • 22.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Displaced Leptons in root s=13 TeV pp Collisions with the ATLAS Detector2021In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 127, no 5, article id 051802Article in journal (Refereed)
    Abstract [en]

    A search for charged leptons with large impact parameters using 139 fb(-1) of root s = 13 TeV pp collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon, and stau masses up to 720, 680, and 340 GeV, respectively, are excluded at 95% confidence level, drastically improving on the previous best limits from LEP.

    Download full text (pdf)
    FULLTEXT01
  • 23.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Dijet Resonance Search with Weak Supervision Using √S=13 TeV pp Collisions in the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 125, no 13, article id 131801Article in journal (Refereed)
    Abstract [en]

    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A→BC, for mA∼O(TeV), mB,mC∼O(100  GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 √s=13  TeV pp collision dataset of 139  fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA=3  TeV and mB≳200  GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.

    Download full text (pdf)
    FULLTEXT01
  • 24.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 125, no 26, article id 261801Article in journal (Refereed)
    Abstract [en]

    The observation of forward proton scattering in association with lepton pairs (e(+)e(-) + p or mu(+)mu(-) + p) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer, while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of root s = 13 TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb(-1). A total of 57 (123) candidates in the ee + p (mu mu + p) final state arc selected, allowing the background-only hypothesis to be rejected with a significance exceeding 5 standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to sigma(ee)(+p) = 11.0 +/- 2.6(stat) 1.2(syst) +/- 0.3(lumi) and sigma(mu)(mu+)(p) = 7.2 +/- 1.6(stat) +/- 0.9(syst) 0.2(lumi) fb in the dielectron and dimuon channel, respectively.

    Download full text (pdf)
    FULLTEXT01
  • 25.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    CP Properties of Higgs Boson Interactions with Top Quarks in the (tt)over-barH and tH Processes Using H -> gamma gamma with the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 125, no 6, article id 061802Article in journal (Refereed)
    Abstract [en]

    A study of the charge conjugation and parity (CP) properties of the interaction between the Higgs boson and top quarks is presented. Higgs bosons are identified via the diphoton decay channel (H -> gamma gamma), and their production in association with a top quark pair ((tt) over barH) or single top quark (tH) is studied. The analysis uses 139 fb(-1) of proton-proton collision data recorded at a center-of-mass energy off root s= 13 TeV with the ATLAS detector at the Large Hadron Collider. Assuming a CP-even coupling, the (tt) over barH process is observed with a significance of 5.2 standard deviations. The measured cross section times H -> gamma gamma branching ratio is 1.64(-0.36)(+0.38)(stat)(-0.14)(+0.17) (sys) fb, and the measured rate for (tt) over barH is 1.43(-0.31)(+0.33) (stat)(-0.15)(+0.21) (sys) times the Standard Model expectation. The tH production process is not observed and an upper limit on its rate of 12 times the Standard Model expectation is set. A CP-mixing angle greater (less) than 43 (-43)degrees is excluded at 95% confidence level.

    Download full text (pdf)
    FULLTEXT01
  • 26.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Medium-Induced Modification of Z-Tagged Charged Particle Yields in Pb plus Pb Collisions at 5.02 TeV with the ATLAS Detector2021In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 126, no 7, article id 072301Article in journal (Refereed)
    Abstract [en]

    The yield of charged particles opposite to a Z boson with large transverse momentum (p(T)) is measured in 260 pb(-1) of pp and 1.7 nb(-1) of Pb + Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quarkgluon plasma created in Pb + Pb collisions. Compared with pp collisions, charged-particle yields in Pb + Pb collisions show significant modifications as a function of charged-particle p(T) in a way that depends on event centrality and Z boson p(T). The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p(T) regime difficult to measure through other channels.

    Download full text (pdf)
    FULLTEXT01
  • 27.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA. Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Dark Matter Produced in Association with a Dark Higgs Boson Decaying into (WW -/+)-W-+/- or ZZ in Fully Hadronic Final States from root s=13 TeV pp Collisions Recorded with the ATLAS Detector2021In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 126, no 12, article id 121802Article in journal (Refereed)
    Abstract [en]

    Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with VV = (WW -/+)-W-+/- or ZZ pairs from a decay of a dark Higgs boson s is searched for using 139 fb(-1) of pp collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The s -> V(q (q) over bar )V(q (q) over bar) decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted VV pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with m(s) > 160 GeV are excluded.

    Download full text (pdf)
    FULLTEXT01
  • 28.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pp Collisions at √s=13 TeV2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 125, no 5, article id 051801Article in journal (Refereed)
    Abstract [en]

    A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb(-1) of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the tau(+)tau(-) decay with at least one tau-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the standard model. In the M-h(125) scenario of the minimal supersymmetric standard model, values of tan beta > 8 and tan beta > 21 are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where tan beta is the ratio of the vacuum expectation values of the two Higgs doublets.

    Download full text (pdf)
    FULLTEXT01
  • 29. Aad, G.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, P. H. Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zwalinski, L.
    Observation of Light-by-Light Scattering in Ultraperipheral Pb plus Pb Collisions with the ATLAS Detector2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, no 5, article id 052001Article in journal (Refereed)
    Abstract [en]

    This Letter describes the observation of the light-by-light scattering process, gamma gamma -> gamma gamma, in Pb + Pb collisions at root S-NN = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb(-1), collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy E-T(gamma) > 3 GeV and pseudorapidity vertical bar eta(gamma)vertical bar < 2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 +/- 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 +/- 13(stat) +/- 7(syst) +/- 3(lumi) nb.

    Download full text (pdf)
    fulltext
  • 30. Aad, G.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Magnetic Monopoles and Stable High-Electric-Charge Objects in 13 Tev Proton-Proton Collisions with the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 124, no 3, article id 031802Article in journal (Refereed)
    Abstract [en]

    A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb(-1) of 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 to 4000 GeV. The search improves by approximately a factor of 5 the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range 20 <= vertical bar z vertical bar <= 60 and extends the charge range to 60 < vertical bar z vertical bar <= 100.

    Download full text (pdf)
    FULLTEXT01
  • 31.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton-Proton Collisions with the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 124, no 22, article id 222002Article in journal (Refereed)
    Abstract [en]

    The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb(-1) of root s = 13 TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

    Download full text (pdf)
    FULLTEXT01
  • 32.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, IN2P3, CNRS, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ Gottingen, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Heavy Resonances Decaying into a Photon and a Hadronically Decaying Higgs Boson in pp Collisions at root s=13 TeV with the ATLAS Detector2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 125, no 25, article id 251802Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for the production of new heavy resonances decaying into a Higgs boson and a photon using proton-proton collision data at root s = 13 TeV collected by the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 139 fb(-1). The analysis is performed by reconstructing hadronically decaying Higgs boson (H -> b (b) over bar) candidates as single large-radius jets. A novel algorithm using information about the jet constituents in the center-of-mass frame of the jet is implemented to identify the two b quarks in the single jet. No significant excess of events is observed above the expected background. Upper limits are set on the production cross-section times branching fraction for narrow spin-1 resonances decaying into a Higgs boson and a photon in the resonance mass range from 0.7 to 4 TeV, cross-section times branching fractions are excluded between 11.6 fb and 0.11 fb at a 95% confidence level.

    Download full text (pdf)
    FULLTEXT01
  • 33.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dimitriadi, C.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Bonn, Phys Inst, Bonn, Germany..
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Steentoft, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Observation of WWW Production in pp Collisions at √s=13 TeV with the ATLAS Detector2022In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 129, no 6, article id 061803Article in journal (Refereed)
    Abstract [en]

    This Letter reports the observation of WWW production and a measurement of its cross section using detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWW production cross section is measured to be 820 ??? 100 ??stat?? ??? 80 ??syst?? fb, approximately 2.6 standard deviations from the predicted cross section of 511 ??? 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy.

    Download full text (pdf)
    FULLTEXT01
  • 34.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dimitriadi, Christina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Bonn, Phys Inst, Bonn, Germany..
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Steentoft, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Observation of Single-Top-Quark Production in Association with a Photon Using the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 18, article id 181901Article in journal (Refereed)
    Abstract [en]

    This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb(-1) of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 +/- 23(stat)(-71)(+75) (syst) fb, to be compared with the standard model prediction of 515(-42)(+36) fb at next-to-leading order in QCD.

    Download full text (pdf)
    fulltext
  • 35.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dimitriadi, Christina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Bonn, Inst Phys, Bonn, Germany..
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Steentoft, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Observation of the γγ→ττ„ Process in Pb plus Pb Collisions and Constraints on the τ„-Lepton Anomalous Magnetic Moment with the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 15, article id 151802Article in journal (Refereed)
    Abstract [en]

    This Letter reports the observation of tau-lepton-pair production in ultraperipheral lead-lead collisions Pb + Pb -> Pb(gamma gamma -> tau tau)Pb and constraints on the tau-lepton anomalous magnetic moment a(tau). The dataset corresponds to an integrated luminosity of 1.44 nb(-1) of LHC Pb + Pb collisions at root(NN)-N-s = 5.02 TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a t-lepton decay, an electron or charged-particle track(s) from the other tau-lepton decay, little additional central-detector activity, and no forward neutrons. The gamma gamma -> tau tau process is observed in Pb + Pb collisions with a significance exceeding 5 standard deviations and a signal strength of mu(tau tau) = 1.03(-0.05)(+0.06) assuming the standard model value for a(tau). To measure a(tau), a template fit to the muon transverse-momentum distribution from tau-lepton candidates is performed, using a dimuon (gamma gamma -> mu mu) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for a(tau) is -0.057 < a(tau) < 0.024.

    Download full text (pdf)
    FULLTEXT01
  • 36.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dimitriadi, Christina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Bonn, Phys Inst, Bonn, Germany.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Steentoft, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Heavy Neutral Leptons in Decays of W Bosons Using a Dilepton Displaced Vertex in root s=13 TeV pp Collisions with the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 6, article id 061803Article in journal (Refereed)
    Abstract [en]

    A search for a long-lived, heavy neutral lepton (N) in 139 fb(-1) of vs = 13 TeV pp collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The N is produced via W ?N mu or W -Ne and decays into two charged leptons and a neutrino, forming a displaced vertex. The N mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the N with the left-handed neutrino states for the N mass range 3 GeV < m(N) < 15 GeV. For the first time, limits are given for both single-flavor and multiflavor mixing scenarios motivated by neutrino flavor oscillation results for both the normal and inverted neutrino-mass hierarchies.

    Download full text (pdf)
    FULLTEXT01
  • 37.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dimitriadi, Christina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Bonn, Phys Inst, Bonn, Germany.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Steentoft, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Strong Constraints on Jet Quenching in Centrality-Dependent p plus Pb Collisions at 5.02 TeV from ATLAS2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 7, article id 072301Article in journal (Refereed)
    Abstract [en]

    Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and p+ Pb collisions. In contrast, while jet quenching is observed in Pb + Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb-1 of p+ Pb and 3.6 pb-1 of pp collisions at 5.02 TeV. The yields of charged hadrons with p(T)(ch) > 0.5 GeV near and opposite in azimuth to jets with p(t)(je) T > 30 or 60 GeV, and the ratios of these yields between p+ Pb and pp collisions, IpPb, are reported. The collision centrality of p+ Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The IpPb values are consistent with unity within a few percent for hadrons with p(T )(ch)> 4 GeV at all centralities. These data provide new, strong constraints that preclude almost any parton energy loss in central p+ Pb collisions.

    Download full text (pdf)
    FULLTEXT01
  • 38.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dimitriadi, Christina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Bonn, Phys Inst, Bonn, Germany.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Steentoft, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Test of CP Invariance in Higgs Boson Vector-Boson-Fusion Production Using the H→γγ Channel with the ATLAS Detector2023In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 131, no 6, article id 061802Article in journal (Refereed)
    Abstract [en]

    A test of CP invariance in Higgs boson production via vector-boson fusion has been performed in the H→γγ channel using 139  fb−1 of proton-proton collision data at √s=13  TeV collected by the ATLAS detector at the LHC. The optimal observable method is used to probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons, as described by an effective field theory. No sign of CP violation is observed in the data. Constraints are set on the parameters describing the strength of the CP-odd component in the coupling between the Higgs boson and the electroweak gauge bosons in two effective field theory bases: ˜d in the HISZ basis and cH˜W in the Warsaw basis. The results presented are the most stringent constraints on CP violation in the coupling between Higgs and weak bosons. The 95% C.L. constraint on ˜d is derived for the first time and the 95% C.L. constraint on cH˜W has been improved by a factor of 5 compared to the previous measurement.

    Download full text (pdf)
    FULLTEXT01
  • 39.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gudnadottir Sunneborn, O,
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for New Phenomena in Final States with Two Leptons and One or No b-Tagged Jets at root S=13 TeV Using the ATLAS Detector2021In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 127, no 14, article id 141801Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena is presented in final states with two leptons and one or no b-tagged jets. The event selection requires the two leptons to have opposite charge, the same flavor (electrons or muons), and a large invariant mass. The analysis is based on the full run-2 proton-proton collision dataset recorded at a center-of-mass energy off root S = 13 TeV by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 139 fb(-1). No significant deviation from the expected background is observed in the data. Inspired by the B-meson decay anomalies, a four-fermion contact interaction between two quarks (b, s) and two leptons (ee or mu mu) is used as a benchmark signal model, which is characterized by the energy scale and coupling, Lambda and g(*), respectively. Contact interactions with Lambda/g(*) lower than 2.0 (2.4) TeV are excluded for electrons (muons) at the 95% confidence level, still far below the value that is favored by the B-meson decay anomalies. Model-independent limits are set as a function of the minimum dilepton invariant mass, which allow the results to be reinterpreted in various signal scenarios.

    Download full text (pdf)
    FULLTEXT01
  • 40.
    Aad, G.
    et al.
    Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gonzalez Suarez, Rebeca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mathisen, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ördek, Serhat
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sunneborn Gudnadottir, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Lepton-Flavor Violation in Z-Boson Decays with τ Leptons with the ATLAS Detector2021In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 127, no 27, article id 271801Article in journal (Refereed)
    Abstract [en]

    A search for lepton-flavor-violating Z -> e tau and Z -> mu tau decays with pp collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb(-1) of Run 2 pp collisions at root s = 13 TeV and is combined with the results of a similar ATLAS search in the final state in which the tau lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying tau leptons significantly improves the sensitivity reach for Z -> l tau decays. The Z -> l tau branching fractions are constrained in this analysis to B(Z -> e tau) < 7.0 x 10(-6) and B (Z -> mu tau) < 7.2 x 10(-6) at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: B(Z -> e tau) < 5.0 x 10(-6) and B(Z -> mu tau) < 6.5 x 10(-6) at 95% confidence level.

    Download full text (pdf)
    FULLTEXT01
  • 41.
    Aad, G.
    et al.
    Aix Marseille Univ, IN2P3, CNRS, CPPM, Marseille, France.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Longitudinal Flow Decorrelations in Xe plus Xe Collisions at √sNN=5.44 TeV with the ATLAS Detector2021In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 126, no 12, article id 122301Article in journal (Refereed)
    Abstract [en]

    The first measurement of longitudinal decorrelations of harmonic flow amplitudes v(n) for n = 2-4 in Xe + Xe collisions at root s(NN) = 5.44 TeV is obtained using 3 mu b(-1) of data with the ATLAS detector at the LHC. The decorrelation signal for v(3) and v(4) is found to be nearly independent of collision centrality and transverse momentum (p(T)) requirements on fmal-state particles, but for v(2) a strong centrality and p(T) dependence is seen. When compared with the results from Pb + Pb collisions at. root s(NN) = 5.02 TcV, the longitudinal decorrelation signal in midcentral Xe + Xe collisions is found to be larger for v(2), but smaller for v(3). Current hydrodynamic models reproduce the ratios of the v(n) measured in Xe + Xe collisions to those in Pb + Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe + Xe and Pb + Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions.

    Download full text (pdf)
    FULLTEXT01
  • 42. Aad, G.
    et al.
    Belanger-Champagne, Camille
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelof, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hansen, C. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in root s=7 TeV pp collisions at the LHC2011In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 106, no 25, p. 251801-Article in journal (Refereed)
    Abstract [en]

    This Letter presents the first search for a heavy particle decaying into an e(+/-)mu(-/+) final state in root s = 7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35 pb(-1). No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except lambda(311)' = 0.11 and lambda(312) = 0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70-1.00 TeV and corresponding cross sections times branching ratios of 0.175-0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z's than previous constraints from the Tevatron.

  • 43. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at root s=8 TeV Measured with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 22, article id 221802Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of root s = 8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb(-1). The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

    Download full text (pdf)
    fulltext
  • 44. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Combined Measurement of the Higgs Boson Mass in pp Collisions at root s=7 and 8 TeV with the ATLAS and CMS Experiments2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 19, article id 191803Article in journal (Refereed)
    Abstract [en]

    A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H --> gamma gamma and H --> ZZ --> 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m(H) = 125.09 +/- 0.21 (stat) +/- 0.11 (syst) GeV.

    Download full text (pdf)
    fulltext
  • 45. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence of W gamma gamma Production in pp Collisions at root s=8 TeV and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 3, article id 031802Article in journal (Refereed)
    Abstract [en]

    This Letter reports evidence of triple gauge boson production pp -> W(l nu)gamma gamma + X, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb(-1), collected by the ATLAS detector in 2012. Events are selected using the W boson decay to e nu or mu nu as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.

    Download full text (pdf)
    fulltext
  • 46. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay H-+/- -> W(+/-)Z using pp Collisions at root S=8 TeV with the ATLAS Experiment2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 23, article id 231801Article in journal (Refereed)
    Abstract [en]

    A search for a charged Higgs boson, H-+/-, decaying to a W-+/- boson and a Z boson is presented. The search is based on 20.3 fb(-1) of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The H-+/- boson is assumed to be produced via vector-boson fusion and the decays W-+/- -> q (q') over bar and Z -> e(+)e(-)/mu(+)mu(-) are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an H+ boson is observed. Upper limits of 31-1020 fb at 95% C.L. are placed on the cross section for vector-boson fusion production of an H-+/- boson times its branching fraction to W(+/-)Z. The limits are compared with predictions from the Georgi-Machacek Higgs triplet model.

    Download full text (pdf)
    fulltext
  • 47. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Determination of the Ratio of b-Quark Fragmentation Fractions f(s)/f(d) in pp Collisions at root s=7 TeV with the ATLAS Detector2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 26, article id 262001Article in journal (Refereed)
    Abstract [en]

    With an integrated luminosity of 2.47 fb(-1) recorded by the ATLAS experiment at the LHC, the exclusive decays B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) of B mesons produced in pp collisions at root s = 7 TeV are used to determine the ratio of fragmentation fractions f(s)/f(d). From the observed B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) yields, the quantity (f(s)/f(d))[B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0) )] is measured to be 0.199 +/- 0.004(stat) +/- 0.008(syst). Using a recent theory prediction for [B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0))] yields (f(s)/f(d)) = 0.240 +/- 0.004(stat) +/- 0.010(syst) +/- 0.017(th). This result is based on a new approach that provides a significant improvement of the world average.

    Download full text (pdf)
    fulltext
  • 48. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the ZZ Production Cross Section in pp Collisions at root s=13 TeV with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 10, article id 101801Article in journal (Refereed)
    Abstract [en]

    The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb(-1) of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7(-2.0)(+2.2) (stat)(-0.7)(+0.9) (syst)(-0.7)(+1.0) (lumi) pb. The results agree with standard model predictions.

    Download full text (pdf)
    fulltext
  • 49. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Long-Range Elliptic Azimuthal Anisotropies in √s=13 and 2.76 TeV pp Collisions with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 17Article in journal (Refereed)
    Abstract [en]

    ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Delta phi, and pseudorapidity, Delta eta, in root s = 13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval vertical bar eta vertical bar < 2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Delta phi similar to 0 that extends over a wide range of Delta eta, which has been referred to as the "ridge." Per-trigger-particle yields, Y(Delta phi) are measured over 2 < vertical bar Delta eta vertical bar < 5. For both collision energies, the Y(Delta phi) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 2 phi reconstructed tracks, and a constant combinatoric contribution modulated by cos (2 Delta phi). The fitted Fourier coefficient, nu(2,2), exhibits factorization, suggesting that the ridge results from per-event cos (2 phi) modulation of the single-particle distribution with Fourier coefficients nu(2). The nu(2) values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p(T) dependence similar to that measured in p + Pb and Pb + Pb collisions. The nu(2) values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p + Pb collisions, and that the dynamics responsible for the ridge has no strong root s dependence.

    Download full text (pdf)
    fulltext
  • 50. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sato, K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at root s=8 TeV with the ATLAS Detecto2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 13, article id 131801Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton-proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb(-1) have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected standard model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the standard model featuring dark-matter candidates.

    Download full text (pdf)
    fulltext
1234567 1 - 50 of 702
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf