uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aydin, Murat
    et al.
    Bochum Univ Appl Sci, Int Geothermal Ctr, D-44801 Bochum, Germany;Istanbul Tech Univ, Energy Inst, TR-34469 Istanbul, Turkey.
    Onur, Mustafa
    Univ Tulsa, McDougall Sch Petr Engn, Tulsa, OK 74104 USA.
    Sisman, Altug
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Istanbul Tech Univ, Energy Inst, TR-34469 Istanbul, Turkey.
    A new method for analysis of constant-temperature thermal response tests2019In: Geothermics, ISSN 0375-6505, E-ISSN 1879-3576, Vol. 78, p. 1-8Article in journal (Refereed)
    Abstract [en]

    In this study, a new analysis method is proposed for estimating thermal conductivity of a ground by using the constant-temperature thermal response test data. The new method is based on an analytical solution of heat transfer rate per unit borehole length by using the Laplace transformation for constant-temperature thermal response tests. Its advantage is that it allows one to estimate thermal conductivity directly from the slope of the logarithmic time dependency of inverse unit-heat-transfer rate value without making an estimation of volumetric heat capacity. The method has been verified by using a numerical model and applied to different experimental data based on different test temperatures and compared with the classical thermal response test method. The results show that the proposed method reliably and effectively estimates thermal conductivity of ground.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf