uu.seUppsala University Publications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Henschel, Henning
    et al.
    Prosenc, Marc H.
    Nicholls, Ian A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    A density functional study on the factors governing metal catalysis of the direct aldol reaction2011In: Journal of Molecular Catalysis A: Chemical, ISSN 1381-1169, E-ISSN 1873-314X, Vol. 351, p. 76-80Article in journal (Refereed)
    Abstract [en]

    Density functional calculations are employed in the study of the C-C bond formation step of an aldol reaction in presence of a series of metals. Focus was placed on first row d-block metals that have been used in catalysis of direct aldol reactions. The obtained energy profiles are analysed in order to differentiate between factors governing catalysis. Results demonstrate a major influence of d-orbital occupation, and suggest some of the so far less commonly used metals as promising candidates for development of new catalytic systems.

  • 2. Sellappan, Raja
    et al.
    Zhu, Jiefang
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Fredriksson, Hans
    Martins, Rafael S.
    Zach, Michael
    Chakarov, Dinko
    Preparation and characterization of TiO2/carbon composite thin films with enhanced photocatalytic activity2011In: Journal of Molecular Catalysis A: Chemical, ISSN 1381-1169, E-ISSN 1873-314X, Vol. 335, no 1-2, p. 136-144Article in journal (Refereed)
    Abstract [en]

    Composite TiO2/carbon thin films prepared by physical vapor deposition techniques on fused silica substrates show enhanced photocatalytic activity towards decomposition of methanol to CO2 and water, as compared to pure TiO2 films of similar thickness. Raman and XRD measurements confirm that annealed TiO2 films exhibit anatase structure while the carbon layer becomes graphitic. Characteristic for the composite films is an enhanced optical absorption in the visible range. The presence of the carbon film causes a shift of the TiO2 absorption edge and modifies its grain size to be smaller. We hypothesize that the observed enhancement of photocatalytic activity is due to synergy effects at the carbon/TiO2 interface, resulting in smaller titania crystallite size and anisotropic charge carrier transport, which in turn reduces their recombination probability.

  • 3.
    Stefanov, B. I.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Topalian, Z.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Granqvist, C.-G.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Österlund, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Acetaldehyde Adsorption and Condensation on Anatase TiO2: Influence of Acetaldehyde Dimerization2014In: Journal of Molecular Catalysis A: Chemical, ISSN 1381-1169, E-ISSN 1873-314X, Vol. 381, p. 77-88Article in journal (Refereed)
  • 4.
    Stefanov, Bozhidar I
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Topalian, Zareh
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Granqvist, Claes-Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Österlund, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Acetaldehyde adsorption and condensation on anatase TiO2: Influence of acetaldehyde dimerization2014In: Journal of Molecular Catalysis A: Chemical, ISSN 1381-1169, E-ISSN 1873-314X, Vol. 381, p. 77-88Article in journal (Refereed)
    Abstract [en]

    Conversion of acetaldehyde to crotonaldehyde on anatase TiO2 films was studied by in situ Fourier transform infrared spectroscopy (FTIR) and by density functional theory (DFT) calculations. In situ FTIR showed that acetaldehyde adsorption is accompanied by the appearance of a hitherto non-assigned absorption band at 1643 cm−1, which is shown to be due to acetaldehyde dimers. The results were supported by DFT calculations. Vibrational frequencies calculated within a partially relaxed cluster model for molecular acetaldehyde and its dimer, and for the corresponding adsorbed species on the anatase (101) surface, were in good agreement with experimental results. A kinetic model was constructed based on the combined FTIR and DFT results, and was shown to explain the essential features of the acetaldehyde condensation reaction.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf