uu.seUppsala University Publications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Agmo Hernandez, Victor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Physical Chemistry.
    Hermes, Michael
    Milchev, Alexander
    Scholz, Fritz
    The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism2009In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 13, no 4, p. 639-649Article in journal (Refereed)
    Abstract [en]

    Using high-resolution chronoamperometric measurements, with sampling each 1.333 micro s, the initial step of the adhesion-spreading of liposomes on a mercury electrode was studied. These measurements allow getting a deeper insight into the first interaction of the liposomes with the mercury electrode, and they show that the overall adhesion-spreading process at different potentials is partially controlled by a fast but weak interaction equilibrium resulting in a mixed diffusion- and reaction-kinetics-controlled mechanism of the overall reaction.

  • 2.
    Agmo Hernandez, Victor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry.
    Milchev, Alexander
    Scholz, Fritz
    Study of the temporal distribution of the adhesion-spreading events of liposomes on a mercury electrode2009In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 13, no 7, p. 1111-1114Article in journal (Refereed)
    Abstract [en]

    The formal analysis of the mechanism of adhesion spreading of liposomes at mercury electrodes shares several characteristics with the mechanism of metal nucleation at electrodes. It is shown that the description of the temporal distribution of the adhesion-spreading events is similar to that of the temporal distribution of metal clusters. Both processes are stochastic in nature and can be described by the Poisson distribution. Using this approach, a previously proposed model for the overall adhesion-spreading mechanism, considering the formation of active sites on the liposome and the actual attachment of the liposomes to the mercury surface, is validated.

  • 3.
    Agmo Hernández, Víctor
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    The theory of metal electronucleation applied to the study of fundamental properties of liposomes2013In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 17, no 2 (SI), p. 299-305Article, review/survey (Refereed)
    Abstract [en]

    This short review describes how the theory of electrochemical metal nucleation considering non-stationary effects due to the activation of latent nucleation sites has been successfully translated and applied to describe phenomena observed on lipid membranes. This rather unexpected connection is merely formal, but has resulted in a completely new approach in liposome research. It has been proposed that hydrophobic active sites spontaneously and constantly appear and disappear on lipid membranes. These sites control the affinity of liposomes for hydrophobic surfaces and determine the permeability of the lipid membrane to small hydrophilic molecules. Thus, the kinetic models for liposome adhesion on hydrophobic substrates and for the spontaneous leakage of liposomal content are identical to that of non-stationary nucleation mentioned above. Therefore, the broad scope of the available work on metal nucleation has facilitated the interpretation of the data obtained in liposome research. Future applications of the nucleation model in the realm of liposomes are also discussed.

  • 4.
    Aitola, Kerttu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Zhang, Jinbao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Vlachopoulos, Nick
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, SB ISIC LSPM, CH-1015 Lausanne, Switzerland..
    Halme, Janne
    Aalto Univ, Sch Sci, Dept Appl Phys, Aalto 00076, Finland..
    Kaskela, Antti
    Aalto Univ, Sch Sci, Dept Appl Phys, Aalto 00076, Finland..
    Nasibulin, Albert G.
    Aalto Univ, Sch Sci, Dept Appl Phys, Aalto 00076, Finland.;Skolkovo Inst Sci & Technol, Skolkovo, Russia..
    Kauppinen, Esko I.
    Aalto Univ, Sch Sci, Dept Appl Phys, Aalto 00076, Finland..
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor2015In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 19, no 10, p. 3139-3144Article in journal (Refereed)
    Abstract [en]

    A semitransparent, flexible single-walled carbon nanotube (SWCNT) film was efficiently used in place of evaporated silver as the counter electrode of a poly(3,4-ethylenedioxythiophene) polymer-based solid-state dye solar cell (SSDSC): the solar-to-electrical energy conversion efficiency of the SWCNT-SSDSC was 4.8 % when it was 5.2 % for the Ag-SSDSC. The efficiency difference stemmed from a 0.1-V difference in the open-circuit voltage, whose reason was speculated to be related to the different recombination processes in the two types of SSDSCs.

  • 5. Burba, Christopher M.
    et al.
    Frech, Roger
    Seidel, Agneta
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Häggström, Lennart
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Nytén, Anton
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Thomas, John O.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Detecting unalloyed tin in LiSn2(PO4)3-based anodes with Mössbauer spectroscopy2009In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 13, no 8, p. 1267-1272Article in journal (Refereed)
    Abstract [en]

    The first discharge of the Li+ ion anode material LiSn2(PO4)3 was investigated with Mössbauer spectroscopy and electrochemical techniques. Mössbauer spectroscopy provided insight into the structure of the tin atoms of the fully discharged anode materials. Spectra consist of overlapping peaks, which are assigned to noncrystalline β-Sn and Li–Sn alloy domains. An analysis of the relative intensities of the Mössbauer spectra shows the relative abundance of β-Sn increases at the expense of the Li–Sn alloy as the discharge rate increases. Cell polarization occurs at higher discharge rates, leading to inefficient electrode utilization and poor cycling performance. Sluggish Li+ ion diffusion through the amorphous Li3PO4 network that is formed early in the discharge process might be responsible for the poor electrochemical performance and the accumulation of unalloyed tin.

  • 6.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Malmgren, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tan, Serdar
    Akdeniz University.
    Influence of annealing temperature on the electrochemical and surface properties of the 5-V spinel cathode material LiCr0.2Ni0.4Mn1.4O4 synthesized by a sol–gel technique2014In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 18, no 8, p. 2157-2166Article in journal (Refereed)
    Abstract [en]

    LiCr0.2Ni0.4Mn1.4O4 was synthesized by a sol-gel technique in which tartaric acid was used as oxide precursor. The synthesized powder was annealed at five different temperatures from 600 to 1,000 A degrees C and tested as a 5-V cathode material in Li-ion batteries. The study shows that annealing at higher temperatures resulted in improved electrochemical performance, increased particle size, and a differentiated surface composition. Spinel powders synthesized at 900 A degrees C had initial discharge capacities close to 130 mAh g(-1) at C and C/2 discharge rates. Powders synthesized at 1,000 A degrees C showed capacity retention values higher than 85 % at C/2, C, and 2C rates at 25 A degrees C after 50 cycles. Annealing at 600-800 A degrees C resulted in formation of spinel particles smaller than 200 nm, while almost micron-sized particles were obtained at 900-1,000 A degrees C. Chromium deficiency was detected at the surface of the active materials annealed at low temperatures. The XPS results indicate presence of Cr6+ impurity when the annealing temperature was not high enough. The study revealed that increased annealing temperature is beneficial for both improved electrochemical performance of LiCr0.2Ni0.4Mn1.4O4 and for avoiding formation of Cr6+ impurity on its surface.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf