The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.

1. Abenius, Erik

et al.

Andersson, Ulf

Edelvik, Fredrik

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Lund, Björn

Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Lötstedt, Per

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

A new discrete element model to deal with rapid deformation and fracture of flat fibrous materials is derived. The method is based on classical mechanical theories and is a combination of traditional particle dynamics and nonlinear engineering beam theory. It is assumed that a fiber can be seen as a beam that is represented by discrete particles, which are moving according to Newton's laws of motion. Damage is dealt with by fracture of fiber-segments and fiberfiber bonds when the potential energy of a segment or bond exceeds the critical fracture energy. This allows fractures to evolve as a result of material properties only. To validate the model, four examples are shown and compared with analytical results found in literature.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Berggren, Martin

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.

Wadbro, Eddie

Berggren, Martin

Optimization of a variable mouth acoustic horn2011In: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 85, p. 591-606Article in journal (Refereed)

In this paper, we present a homogenization approach that can be used in the geometrically nonlinear regime for stress-driven and strain-driven homogenization and even a combination of both. Special attention is paid to the straightforward implementation in combination with the finite-element method. The formulation follows directly from the principle of virtual work, the periodic boundary conditions, and the Hill-Mandel principle of macro-homogeneity. The periodic boundary conditions are implemented using the Lagrange multiplier method to link macroscopic strain to the boundary displacements of the computational model of a representative volume element. We include the macroscopic strain as a set of additional degrees of freedom in the formulation. Via the Lagrange multipliers, the macroscopic stress naturally arises as the associated forces' that are conjugate to the macroscopic strain displacements'. In contrast to most homogenization schemes, the second Piola-Kirchhoff stress and Green-Lagrange strain have been chosen for the macroscopic stress and strain measures in this formulation. The usage of other stress and strain measures such as the first Piola-Kirchhoff stress and the deformation gradient is discussed in the Appendix.