uu.seUppsala University Publications
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdulla, Salim
    et al.
    Ifakara Hlth Inst, Dar Es Salaam, Tanzania..
    Adam, Ishag
    Univ Khartoum, Fac Med, Khartoum, Sudan..
    Adjei, George O.
    Univ Ghana, Sch Med, Ctr Trop Clin Pharmacol & Therapeut, Accra, Ghana..
    Adjuik, Martin A.
    INDEPTH Network Secretariat, Accra, Ghana..
    Alemayehu, Bereket
    Int Ctr AIDS Care & Treatment Programs, Addis Ababa, Ethiopia..
    Allan, Richard
    MENTOR Initiat, Crawley, England..
    Arinaitwe, Emmanuel
    Infect Dis Res Collaborat, Kampala, Uganda..
    Ashley, Elizabeth A.
    Epictr, Paris, France..
    Ba, Mamadou S.
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Barennes, Hubert
    Ctr Muraz, Bobo Dioulasso, Burkina Faso.;French Foreign Affairs, Biarritz, France..
    Barnes, Karen I.
    WorldWide Antimalarial Resistance Network WWARN, Cape Town, South Africa.;Univ Cape Town, Dept Med, Div Clin Pharmacol, ZA-7925 Cape Town, South Africa..
    Bassat, Quique
    Ctr Invest Saude Manhica, Manhica, Mozambique.;Univ Barcelona, Barcelona Ctr Int Hlth Res CRESIB, ISGlobal, Hosp Clin, Barcelona, Spain..
    Baudin, Elisabeth
    MENTOR Initiat, Crawley, England..
    Berens-Riha, Nicole
    Univ Munich LMU, Med Ctr, Div Infect Dis & Trop Med, Munich, Germany.;LMU, German Ctr Infect Res DZIF, Munich, Germany..
    Bjoerkman, Anders
    Karolinska Inst, Dept Microbiol Tumour & Cell Biol, Stockholm, Sweden..
    Bompart, Francois
    Sanofi Aventis, Direct Acces Med Access Med, Gentilly, France..
    Bonnet, Maryline
    Epictr, Geneva, Switzerland..
    Borrmann, Steffen
    Wellcome Trust Res Programme, Kenya Med Res Inst, Kilifi, Kenya.;Univ Tubingen, Inst Trop Med, Tubingen, Germany.;German Ctr Infect Res, Tubingen, Germany..
    Bousema, Teun
    London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Infect & Immun, London WC1, England.;Radboud Univ Nijmegen, Med Ctr, Dept Med Microbiol, Njimegen, Netherlands..
    Brasseur, Philippe
    IRD, Dakar, Senegal..
    Bukirwa, Hasifa
    Uganda Malaria Surveillance Project, Kampala, Uganda..
    Checchi, Francesco
    Epictr, Paris, France..
    Dahal, Prabin
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    D'Alessandro, Umberto
    Inst Trop Med, Unit Malariol, B-2000 Antwerp, Belgium.;MRC Unit, Fajara, Gambia.;London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Dis Control, London WC1, England..
    Desai, Meghna
    Ctr Dis Control & Prevent, Div Parasit Dis & Malaria, Malaria Branch, Atlanta, GA USA..
    Dicko, Alassane
    Univ Bamako, Fac Med Pharm & Dent, Malaria Res & Training Ctr, Bamako, Mali.;Univ Bamako, Fac Med Pharm & Dent, Dept Publ Hlth, Bamako, Mali..
    Djimde, Abdoulaye A.
    Univ Bamako, Fac Med Pharm & Dent, Malaria Res & Training Ctr, Bamako, Mali..
    Dorsey, Grant
    Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA..
    Doumbo, Ogobara K.
    Univ Bamako, Fac Med Pharm & Dent, Malaria Res & Training Ctr, Bamako, Mali..
    Drakeley, Chris J.
    German Ctr Infect Res, Tubingen, Germany..
    Duparc, Stephan
    Med Malaria Venture, Geneva, Switzerland..
    Eshetu, Teferi
    Univ Barcelona, Barcelona Ctr Int Hlth Res CRESIB, ISGlobal, Hosp Clin, Barcelona, Spain.;Jimma Univ, Dept Med Lab Sci & Pathol, Jimma, Ethiopia..
    Espie, Emmanuelle
    Epictr, Paris, France..
    Etard, Jean-Francois
    Epictr, Paris, France.;IRD, Montpellier, France..
    Faiz, Abul M.
    Mahidol Univ, Fac Trop Med, Bangkok, Thailand..
    Falade, Catherine O.
    Univ Ibadan, Coll Med, Dept Pharmacol & Therapeut, Ibadan, Nigeria..
    Fanello, Caterina I.
    Mahidol Univ, Fac Trop Med, Mahidol Oxford Res Unit, Bangkok, Thailand..
    Faucher, Jean-Francois
    IRD, Mother & Child Hlth Trop Res Unit, Paris, France.;Univ Paris 05, PRES Sorbonne Paris Cite, Paris, France.;Univ Besancon, Med Ctr, Dept Infect Dis, F-25030 Besancon, France..
    Faye, Babacar
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Faye, Oumar
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Filler, Scott
    Global Fund Fight AIDS TB & Malaria, Geneva, Switzerland..
    Flegg, Jennifer A.
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia.;Monash Univ, Monash Acad Cross & Interdisciplinary Math Applic, Melbourne, Vic 3004, Australia..
    Fofana, Bakary
    Univ Bamako, Fac Med Pharm & Dent, Malaria Res & Training Ctr, Bamako, Mali..
    Fogg, Carole
    Univ Portsmouth, Portsmouth Hosp NHS Trust, Portsmouth, Hants, England..
    Gadalla, Nahla B.
    London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Infect & Immun, London WC1, England.;Natl Res Ctr, Res Inst Trop Med, Dept Epidemiol, Khartoum, Sudan.;NIAID, Rockville, MD USA..
    Gaye, Oumar
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Genton, Blaise
    Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, Basel, Switzerland.;Univ Lausanne Hosp, Div Infect Dis, Lausanne, Switzerland.;Univ Lausanne Hosp, Dept Ambulatory Care & Community Med, Lausanne, Switzerland..
    Gething, Peter W.
    Univ Oxford, Dept Zool, Spatial Ecol & Epidemiol Grp, Oxford OX1 3PS, England..
    Gil, Jose P.
    Karolinska Inst, Pharmacogenet Sect, Drug Resistance Unit, Dept Physiol & Pharmacol, Stockholm, Sweden.;Univ Lisbon, Fac Sci, Biosyst & Integrat Sci Inst BioISI, P-1699 Lisbon, Portugal.;SUNY Binghamton, Harpur Coll Arts & Sci, Binghamton, NY USA..
    Gonzalez, Raquel
    Ctr Invest Saude Manhica, Manhica, Mozambique.;Univ Barcelona, Barcelona Ctr Int Hlth Res CRESIB, ISGlobal, Hosp Clin, Barcelona, Spain..
    Grandesso, Francesco
    Epictr, Paris, France..
    Greenhouse, Bryan
    Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA..
    Greenwood, Brian
    London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Dis Control, London WC1, England..
    Grivoyannis, Anastasia
    Univ Washington, Div Emergency Med, Seattle, WA 98195 USA..
    Guerin, Philippe J.
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    Guthmann, Jean-Paul
    Inst Veille Sanit, Dept Malad Infect, St Maurice, France..
    Hamed, Kamal
    Novartis Pharmaceut, E Hanover, NJ USA..
    Hamour, Sally
    Royal Free Hosp, UCL Ctr Nephrol, London NW3 2QG, England..
    Hay, Simon I.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Washington, Inst Hlth Metr & Evaluat, Seattle, WA 98195 USA.;NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA..
    Hodel, Eva Maria
    Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, Basel, Switzerland.;Univ Liverpool, Liverpool Sch Trop Med, Dept Parasitol, Liverpool L3 5QA, Merseyside, England..
    Humphreys, Georgina S.
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    Hwang, Jimee
    Ctr Dis Control & Prevent, Div Parasit Dis & Malaria, Malaria Branch, Atlanta, GA USA.;Univ Calif San Francisco, Global Hlth Grp, San Francisco, CA 94143 USA..
    Ibrahim, Maman L.
    Ctr Rech Med & Sanit, Niamey, Niger..
    Jima, Daddi
    Fed Minist Hlth, Addis Ababa, Ethiopia..
    Jones, Joel J.
    Minist Hlth & Social Welf, Natl Malaria Control Programme, Monrovia, Liberia..
    Jullien, Vincent
    Univ Paris 05, AP HP, Paris, France..
    Juma, Elizabeth
    Kenya Govt Med Res Ctr, Nairobi, Kenya..
    Kachur, Patrick S.
    Ctr Dis Control & Prevent, Div Parasit Dis & Malaria, Malaria Branch, Atlanta, GA USA..
    Kager, Piet A.
    Univ Amsterdam, Acad Med Ctr, Ctr Infect & Immun Amsterdam CINIMA, Div Infect Dis Trop Med & AIDS, NL-1105 AZ Amsterdam, Netherlands..
    Kamugisha, Erasmus
    Catholic Univ Hlth & Allied Sci, Mwanza, Tanzania..
    Kamya, Moses R.
    Makerere Univ, Coll Hlth Sci, Kampala, Uganda..
    Karema, Corine
    Minist Hlth, Malaria & Other Parasit Dis Div RBC, Kigali, Rwanda..
    Kayentao, Kassoum
    Univ Bamako, Fac Med Pharm & Dent, Malaria Res & Training Ctr, Bamako, Mali..
    Kiechel, Jean-Rene
    Drugs Neglected Dis initiat, Geneva, Switzerland..
    Kironde, Fred
    Makerere Univ, Dept Biochem, Kampala, Uganda..
    Kofoed, Poul-Erik
    Projecto Saude Bandim, Bissau, Guinea Bissau.;Kolding Cty Hosp, Dept Paediat, Kolding, Denmark..
    Kremsner, Peter G.
    Univ Tubingen, Inst Trop Med, Tubingen, Germany.;Ctr Rech Med Lambarene, Lambarene, Gabon..
    Krishna, Sanjeev
    Univ London, Inst Infect & Immun, London, England. Operat Ctr Barcelona Athens, Med Sans Frontieres, Barcelona, Spain..
    Lameyre, Valerie
    Sanofi Aventis, Direct Acces Med Access Med, Gentilly, France..
    Lell, Bertrand
    Univ Tubingen, Inst Trop Med, Tubingen, Germany.;Ctr Rech Med Lambarene, Lambarene, Gabon..
    Lima, Angeles
    Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England..
    Makanga, Michael
    European & Dev Countries Clin Trials Partnership, Cape Town, South Africa..
    Malik, ElFatih M.
    Fed Minist Hlth, Khartoum, Sudan..
    Marsh, Kevin
    Wellcome Trust Res Programme, Kenya Med Res Inst, Kilifi, Kenya.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    Mårtensson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center. Karolinska Inst, Dept Microbiol Tumour & Cell Biol, Stockholm, Sweden.;Karolinska Inst, Dept Publ Hlth Sci, Stockholm, Sweden..
    Massougbodji, Achille
    Univ Abomey Calavi, FSS, CERPAGE, Cotonou, Benin..
    Menan, Herve
    Univ Cocody, Fac Pharm, Dept Parasitol, Abidjan, Cote Ivoire..
    Menard, Didier
    Inst Pasteur Cambodia, Malaria Mol Epidemiol Unit, Phnom Penh, Cambodia..
    Menendez, Clara
    Ctr Invest Saude Manhica, Manhica, Mozambique.;Univ Barcelona, Barcelona Ctr Int Hlth Res CRESIB, ISGlobal, Hosp Clin, Barcelona, Spain..
    Mens, Petra F.
    Univ Amsterdam, Acad Med Ctr, Ctr Infect & Immun Amsterdam CINIMA, Div Infect Dis Trop Med & AIDS, NL-1105 AZ Amsterdam, Netherlands.;KIT Biomed Res, Royal Trop Inst, Amsterdam, Netherlands..
    Meremikwu, Martin
    Univ Calabar, Dept Paediat, Calabar, Nigeria.;Inst Trop Dis Res & Prevent, Calabar, Nigeria..
    Moreira, Clarissa
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    Nabasumba, Carolyn
    Epictr, Paris, France.;Mbarara Univ Sci & Technol, Fac Med, Mbarara, Uganda..
    Nambozi, Michael
    Trop Dis Res Ctr, Ndola, Zambia..
    Ndiaye, Jean-Louis
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Ngasala, Billy E.
    Muhimbili Univ Hlth & Allied Sci, Dept Parasitol, Dar Es Salaam, Tanzania.;Karolinska Inst, Dept Med Solna, Infect Dis Unit, Malaria Res, Stockholm, Sweden..
    Nikiema, Frederic
    Inst Rech Sci Sante, Bobo Dioulasso, Burkina Faso..
    Nsanzabana, Christian
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    Ntoumi, Francine
    Univ Tubingen, Inst Trop Med, Tubingen, Germany.;Univ Marien Ngouabi, FCRM, Fac Sci Sante, Brazzaville, Congo..
    Oguike, Mary
    London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Infect & Immun, London WC1, England..
    Ogutu, Bernhards R.
    United States Army Med Res Unit, Kenya Med Res Inst, Kisumu, Kenya..
    Olliaro, Piero
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England.;UNICEF UNDP World Bank WHO Special Programme Res, Geneva, Switzerland..
    Omar, Sabah A.
    Kenya Govt Med Res Ctr, Ctr Biotechnol Res & Dev, Nairobi, Kenya..
    Ouedraogo, Jean-Bosco
    Ctr Muraz, Bobo Dioulasso, Burkina Faso.;Inst Rech Sci Sante, Bobo Dioulasso, Burkina Faso..
    Owusu-Agyei, Seth
    Kintampo Hlth Res Ctr, Kintampo, Ghana..
    Penali, Louis K.
    WorldWide Antimalarial Resistance Network WWARN W, Dakar, Senegal..
    Pene, Mbaye
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Peshu, Judy
    Wellcome Trust Res Programme, Kenya Med Res Inst, Kilifi, Kenya..
    Piola, Patrice
    Inst Pasteur Madagascar, Epidemiol Unit, Antananarivo, Madagascar..
    Plowe, Christopher V.
    Univ Maryland, Sch Med, Howard Hughes Med Inst, Ctr Vaccine Dev, Baltimore, MD 21201 USA..
    Premji, Zul
    Muhimbili Univ Hlth & Allied Sci, Dept Parasitol, Dar Es Salaam, Tanzania..
    Price, Ric N.
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England.;Menzies Sch Hlth Res, Darwin, NT, Australia.;Charles Darwin Univ, Darwin, NT 0909, Australia..
    Randrianarivelojosia, Milijaona
    Inst Pasteur Madagascar, Malaria Res Unit, Antananarivo, Madagascar..
    Rombo, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center. Karolinska Inst, Karolinska Univ Hosp, Infect Dis Unit, Malaria Res Lab,Dept Med, Stockholm, Sweden.;Malarsjukhuset, Dept Infect Dis, S-63188 Eskilstuna, Sweden..
    Roper, Cally
    London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Pathogen Mol Biol, London WC1, England..
    Rosenthal, Philip J.
    Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA..
    Sagara, Issaka
    Univ Bamako, Fac Med Pharm & Dent, Malaria Res & Training Ctr, Bamako, Mali..
    Same-Ekobo, Albert
    Ctr Hosp Univ Yaounde, Fac Med & Sci Biomed, Yaounde, Cameroon..
    Sawa, Patrick
    Int Ctr Insect Physiol & Ecol, Human Hlth Div, Mbita, Kenya..
    Schallig, Henk D. F. H.
    KIT Biomed Res, Royal Trop Inst, Amsterdam, Netherlands..
    Schramm, Birgit
    Epictr, Paris, France..
    Seck, Amadou
    WorldWide Antimalarial Resistance Network WWARN W, Dakar, Senegal..
    Shekalaghe, Seif A.
    Ifakara Hlth Inst, Dar Es Salaam, Tanzania.;Kilimanjaro Christian Med Ctr, Kilimanjaro Clin Med Res Inst, Moshi, Tanzania..
    Sibley, Carol H.
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA..
    Sinou, Vronique
    Aix Marseille Univ, Fac Pharm, UMR MD3, Marseille, France..
    Sirima, Sodiomon B.
    CNRFP, Ouagadougou, Burkina Faso..
    Som, Fabrice A.
    Inst Rech Sci Sante, Bobo Dioulasso, Burkina Faso..
    Sow, Doudou
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Staedke, Sarah G.
    Infect Dis Res Collaborat, Kampala, Uganda.;London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Clin Res, London WC1, England..
    Stepniewska, Kasia
    WorldWide Antimalarial Resistance Network WWARN, Oxford, England.;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England..
    Sutherland, Colin J.
    London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Infect & Immun, London WC1, England..
    Swarthout, Todd D.
    Med Sans Frontieres, London, England..
    Sylla, Khadime
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Talisuna, Ambrose O.
    East Africa Reg Ctr, WorldWide Antimalarial Resistance Network WWARN, Nairobi, Kenya.;Univ Oxford, KEMRI, Wellcome Trust Res Programme, Nairobi, Kenya..
    Taylor, Walter R. J.
    UNICEF UNDP World Bank WHO Special Programme Res, Geneva, Switzerland.;Hop Cantonal Univ Geneva, Serv Med Int & Humanitaire, Geneva, Switzerland..
    Temu, Emmanuel A.
    MENTOR Initiat, Crawley, England.;Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, Basel, Switzerland.;Univ Basel, Basel, Switzerland..
    Thwing, Julie I.
    Ctr Dis Control & Prevent, Div Parasit Dis & Malaria, Malaria Branch, Atlanta, GA USA..
    Tine, Roger C. K.
    Univ Cheikh Anta Diop, Dept Parasitol & Mycol, Fac Med, Dakar, Senegal..
    Tinto, Halidou
    Ctr Muraz, Bobo Dioulasso, Burkina Faso.;Inst Rech Sci Sante, Bobo Dioulasso, Burkina Faso..
    Tommasini, Silva
    Sigma Tau Ind Farmaceut Riunite SpA, Rome, Italy..
    Toure, Offianan A.
    Inst Pasteur Cote Ivoire, Malariol Dept, Abidjan, Cote Ivoire..
    Ursing, Johan
    Projecto Saude Bandim, Bissau, Guinea Bissau.;Karolinska Inst, Dept Med Solna, Infect Dis Unit, Malaria Res, Stockholm, Sweden..
    Vaillant, Michel T.
    CRP Sante, Ctr Hlth Studies, Methodol & Stat Unit, Luxembourg, Luxembourg.;Univ Bordeaux 2, Unite Bases Therapeut Inflammat & Infect 3677, F-33076 Bordeaux, France..
    Valentini, Giovanni
    Sigma Tau Ind Farmaceut Riunite SpA, Rome, Italy..
    Van den Broek, Ingrid
    Med Sans Frontieres, London, England.;Natl Inst Publ Hlth & Environm, Ctr Infect Dis Control, NL-3720 BA Bilthoven, Netherlands..
    Van Vugt, Michele
    Univ Amsterdam, Acad Med Ctr, Ctr Trop Med & Travel Med, Div Infect Dis, NL-1012 WX Amsterdam, Netherlands..
    Ward, Stephen A.
    Univ Liverpool, Liverpool Sch Trop Med, Dept Parasitol, Liverpool L3 5QA, Merseyside, England..
    Winstanley, Peter A.
    Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England..
    Yavo, William
    Univ Cocody, Fac Pharmaceut & Biol Sci, Dept Parasitol & Mycol, Abidjan, Cote Ivoire.;Natl Inst Publ Hlth, Malaria Res & Control Ctr, Abidjan, Cote Ivoire..
    Yeka, Adoke
    Uganda Malaria Surveillance Project, Kampala, Uganda..
    Zolia, Yah M.
    Minist Hlth & Social Welf, Natl Malaria Control Programme, Monrovia, Liberia..
    Zongo, Issaka
    Inst Rech Sci Sante, Bobo Dioulasso, Burkina Faso..
    Clinical determinants of early parasitological response to ACTs in African patients with uncomplicated falciparum malaria: a literature review and meta-analysis of individual patient data2015In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 13, article id 212Article, review/survey (Refereed)
    Abstract [en]

    Background: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to artemisinin. This study was designed to establish the baseline values for clearance in patients from Sub-Saharan African countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs). Methods: A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials (uncontrolled trials, controlled trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa, between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting early parasitological response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in included studies was evaluated based on study design, methodology and missing data. Results: In total, 29,493 patients from 84 clinical trials were included in the analysis, treated with artemether-lumefantrine (n = 13,664), artesunate-amodiaquine (n = 11,337) and dihydroartemisinin-piperaquine (n = 4,492). The overall parasite clearance rate was rapid. The parasite positivity rate (PPR) decreased from 59.7 % (95 % CI: 54.5-64.9) on day 1 to 6.7 % (95 % CI: 4.8-8.7) on day 2 and 0.9 % (95 % CI: 0.5-1.2) on day 3. The 95th percentile of observed day 3 PPR was 5.3 %. Independent risk factors predictive of day 3 positivity were: high baseline parasitaemia (adjusted odds ratio (AOR) = 1.16 (95 % CI: 1.08-1.25); per 2-fold increase in parasite density, P <0.001); fever (>37.5 degrees C) (AOR = 1.50 (95 % CI: 1.06-2.13), P = 0.022); severe anaemia (AOR = 2.04 (95 % CI: 1.21-3.44), P = 0.008); areas of low/moderate transmission setting (AOR = 2.71 (95 % CI: 1.38-5.36), P = 0.004); and treatment with the loose formulation of artesunate-amodiaquine (AOR = 2.27 (95 % CI: 1.14-4.51), P = 0.020, compared to dihydroartemisinin-piperaquine). Conclusions: The three ACTs assessed in this analysis continue to achieve rapid early parasitological clearance across the sites assessed in Sub-Saharan Africa. A threshold of 5 % day 3 parasite positivity from a minimum sample size of 50 patients provides a more sensitive benchmark in Sub-Saharan Africa compared to the current recommended threshold of 10 % to trigger further investigation of artemisinin susceptibility.

  • 2. Adjuik, Martin A.
    et al.
    Allan, Richard
    Anvikar, Anupkumar R.
    Ashley, Elizabeth A.
    Ba, Mamadou S.
    Barennes, Hubert
    Barnes, Karen I.
    Bassat, Quique
    Baudin, Elisabeth
    Bjorkman, Anders
    Bompart, Francois
    Bonnet, Maryline
    Borrmann, Steffen
    Brasseur, Philippe
    Bukirwa, Hasifa
    Checchi, Francesco
    Cot, Michel
    Dahal, Prabin
    D'Alessandro, Umberto
    Deloron, Philippe
    Desai, Meghna
    Diap, Graciela
    Djimde, Abdoulaye A.
    Dorsey, Grant
    Doumbo, Ogobara K.
    Espie, Emmanuelle
    Etard, Jean-Francois
    Fanello, Caterina I.
    Faucher, Jean-Francois
    Faye, Babacar
    Flegg, Jennifer A.
    Gaye, Oumar
    Gething, Peter W.
    Gonzalez, Raquel
    Grandesso, Francesco
    Guerin, Philippe J.
    Guthmann, Jean-Paul
    Hamour, Sally
    Hasugian, Armedy Ronny
    Hay, Simon I.
    Humphreys, Georgina S.
    Jullien, Vincent
    Juma, Elizabeth
    Kamya, Moses R.
    Karema, Corine
    Kiechel, Jean R.
    Kremsner, Peter G.
    Krishna, Sanjeev
    Lameyre, Valerie
    Ibrahim, Laminou M.
    Lee, Sue J.
    Lell, Bertrand
    Martensson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Centrum för klinisk forskning i Sörmland (CKFD).
    Massougbodji, Achille
    Menan, Herve
    Menard, Didier
    Menendez, Clara
    Meremikwu, Martin
    Moreira, Clarissa
    Nabasumba, Carolyn
    Nambozi, Michael
    Ndiaye, Jean-Louis
    Nikiema, Frederic
    Nsanzabana, Christian
    Ntoumi, Francine
    Ogutu, Bernhards R.
    Olliaro, Piero
    Osorio, Lyda
    Ouedraogo, Jean-Bosco
    Penali, Louis K.
    Pene, Mbaye
    Pinoges, Loretxu
    Piola, Patrice
    Price, Ric N.
    Roper, Cally
    Rosenthal, Philip J.
    Rwagacondo, Claude Emile
    Same-Ekobo, Albert
    Schramm, Birgit
    Seck, Amadou
    Sharma, Bhawna
    Sibley, Carol Hopkins
    Sinou, Veronique
    Sirima, Sodiomon B.
    Smith, Jeffery J.
    Smithuis, Frank
    Some, Fabrice A.
    Sow, Doudou
    Staedke, Sarah G.
    Stepniewska, Kasia
    Swarthout, Todd D.
    Sylla, Khadime
    Talisuna, Ambrose O.
    Tarning, Joel
    Taylor, Walter R. J.
    Temu, Emmanuel A.
    Thwing, Julie I.
    Tjitra, Emiliana
    Tine, Roger C. K.
    Tinto, Halidou
    Vaillant, Michel T.
    Valecha, Neena
    Van den Broek, Ingrid
    White, Nicholas J.
    Yeka, Adoke
    Zongo, Issaka
    The effect of dosing strategies on the therapeutic efficacy of artesunate-amodiaquine for uncomplicated malaria: a meta-analysis of individual patient data2015In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 13, article id 66Article in journal (Refereed)
    Abstract [en]

    Background: Artesunate-amodiaquine (AS-AQ) is one of the most widely used artemisinin-based combination therapies (ACTs) to treat uncomplicated Plasmodium falciparum malaria in Africa. We investigated the impact of different dosing strategies on the efficacy of this combination for the treatment of falciparum malaria. Methods: Individual patient data from AS-AQ clinical trials were pooled using the WorldWide Antimalarial Resistance Network (WWARN) standardised methodology. Risk factors for treatment failure were identified using a Cox regression model with shared frailty across study sites. Results: Forty-three studies representing 9,106 treatments from 1999-2012 were included in the analysis; 4,138 (45.4%) treatments were with a fixed dose combination with an AQ target dose of 30 mg/kg (FDC), 1,293 (14.2%) with a non-fixed dose combination with an AQ target dose of 25 mg/kg (loose NFDC-25), 2,418 (26.6%) with a non-fixed dose combination with an AQ target dose of 30 mg/kg (loose NFDC-30), and the remaining 1,257 (13.8%) with a co-blistered non-fixed dose combination with an AQ target dose of 30 mg/kg (co-blistered NFDC). The median dose of AQ administered was 32.1 mg/kg [IQR: 25.9-38.2], the highest dose being administered to patients treated with co-blistered NFDC (median = 35.3 mg/kg [IQR: 30.6-43.7]) and the lowest to those treated with loose NFDC-25 (median = 25.0 mg/kg [IQR: 22.7-25.0]). Patients treated with FDC received a median dose of 32.4 mg/kg [IQR: 27-39.0]. After adjusting for reinfections, the corrected antimalarial efficacy on day 28 after treatment was similar for co-blistered NFDC (97.9% [95% confidence interval (CI): 97.0-98.8%]) and FDC (98.1% [95% CI: 97.6%-98.5%]; P = 0.799), but significantly lower for the loose NFDC-25 (93.4% [95% CI: 91.9%-94.9%]), and loose NFDC-30 (95.0% [95% CI: 94.1%-95.9%]) (P < 0.001 for all comparisons). After controlling for age, AQ dose, baseline parasitemia and region; treatment with loose NFDC-25 was associated with a 3.5-fold greater risk of recrudescence by day 28 (adjusted hazard ratio, AHR = 3.51 [95% CI: 2.02-6.12], P < 0.001) compared to FDC, and treatment with loose NFDC-30 was associated with a higher risk of recrudescence at only three sites. Conclusions: There was substantial variation in the total dose of amodiaquine administered in different AS-AQ combination regimens. Fixed dose AS-AQ combinations ensure optimal dosing and provide higher antimalarial treatment efficacy than the loose individual tablets in all age categories.

  • 3.
    Amaratunga, Chanaki
    et al.
    NIAID, Lab Malaria & Vector Res, Div Intramural Res, NIH, Rockville, MD USA.
    Andrianaranjaka, Voahangy Hanitriniaina
    Inst Pasteur Madagascar, Malaria Res Unit, Antananarivo, Madagascar;Univ Antananarivo, Fac Sci, Antananarivo, Madagascar.
    Ashley, Elizabeth
    MOCRU, Yangon, Myanmar;Univ Oxford, Ctr Trop Med & Global Hlth, Oxford, England.
    Bethell, Delia
    Armed Forces Res Inst Med Sci, Bangkok, Thailand.
    Bjorkman, Anders
    Karolinska Inst, Dept Mol Tumor & Cell Biol, Stockholm, Sweden.
    Bonnington, Craig A.
    Shoklo Malaria Res Unit, Mae Sot, Thailand.
    Cooper, Roland A.
    Dominican Univ Calif, Dept Nat Sci & Math, San Rafael, CA USA.
    Dhorda, Mehul
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England.
    Dondorp, Arjen
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England;Mahidol Univ, Fac Trop Med, Mahidol Oxford Res Unit, Bangkok, Thailand.
    Erhart, Annette
    ITM Antwerp, Dept Publ Hlth, Antwerp, Belgium;Inst Trop Med, MRC Unit Gambia, Fajara, Gambia;Inst Trop Med, MRC Unit Gambia, Fajara, Gambia.
    Fairhurst, Rick M.
    NIAID, Lab Malaria & Vector Res, Div Intramural Res, NIH, Rockville, MD USA.
    Faiz, Abul
    Dev Care Fdn, Dhaka, Bangladesh.
    Fanello, Caterina
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, Oxford, England;Mahidol Oxford Res Unit, Bangkok, Thailand.
    Fukuda, Mark M.
    Armed Forces Res Inst Med Sci, Bangkok, Thailand.
    Guerin, Philippe
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England.
    van Huijsduijnen, Rob Hooft
    Med Malaria Venture, Geneva, Switzerland.
    Hien, Tran Tinh
    Hong, N. V.
    Natl Inst Malariol Parasitol & Entomol, Hanoi, Vietnam.
    Htut, Ye
    Dept Med Res, Yangon, Myanmar.
    Huang, Fang
    Chinese Ctr Dis Control & Prevent, Natl Inst Parasit Dis, Shanghai, Peoples R China.
    Humphreys, Georgina
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England.
    Imwong, Mallika
    Mahidol Univ, Fac Trop Med, Dept Mol Trop Med & Genet, Bangkok, Thailand;Mahidol Univ, Fac Trop Med, Mahidol Oxford Trop Med Res Unit, Bangkok, Thailand.
    Kennon, Kalynn
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England.
    Lim, Pharath
    NIAID, Lab Malaria & Vector Res, Div Intramural Res, NIH, Rockville, MD USA.
    Lin, Khin
    Dept Med Res, Pyin Oo Lwin Branch, Anesakhan, Myanmar.
    Lon, Chanthap
    Armed Forces Res Inst Med Sci, Bangkok, Thailand.
    Mårtensson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, International Maternal and Child Health (IMCH).
    Mayxay, Mayfong
    Lao Oxford Mahosot Hospital, Wellcome Trust Res Unit, LOMWRU, Viangchan, Laos;Univ Hlth Sci, Minist Hlth, Fac Postgrad Studies, Viangchan, Laos;Churchill Hosp, Nuffield Dept Med, Ctr Trop Med & Global Hlth, Oxford, England.
    Mokuolu, Olugbenga
    Univ Ilorin, Coll Hlth Sci, Dept Paediat & Child Hlth, Ilorin, Nigeria;Univ Ilorin, Teaching Hosp, Ctr Malaria & Other Trop Dis Care, Ilorin, Nigeria.
    Morris, Ulrika
    Karolinska Inst, Dept Mol Tumor & Cell Biol, Stockholm, Sweden.
    Ngasala, Billy E.
    Muhimbili Univ Hlth & Allied Sci, Dept Parasitol & Med Entomol, Dar Es Salaam, Tanzania.
    Amambua-Ngwa, Alfred
    Inst Trop Med, MRC Unit Gambia, Fajara, Gambia.
    Noedl, Harald
    Med Univ Vienna, Inst Specif Prophylaxis & Trop Med, Vienna, Austria.
    Nosten, Francois
    Shoklo Malaria Res Unit, Mae Sot, Thailand;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, Oxford, England;Mahidol Univ, Fac Trop Med, Mahidol Oxford Trop Med Res Unit, Bangkok, Thailand.
    Onyamboko, Marie
    Mahidol Oxford Res Unit, Bangkok, Thailand;Kinshasa Sch Publ Hlth, Kinshasa, DEM REP CONGO.
    Phyo, Aung Pyae
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, Oxford, England;Mahidol Univ, Fac Trop Med, Mahidol Oxford Trop Med Res Unit, Bangkok, Thailand.
    Plowe, Christopher V.
    Duke Univ, Duke Global Hlth Inst, Durham, NC USA.
    Pukrittayakamee, Sasithon
    Mahidol Univ, Dept Clin Trop Med, Bangkok, Thailand;Royal Soc Thailand, Bangkok, Thailand.
    Randrianarivelojosia, Milijaona
    Inst Pasteur Madagascar, Malaria Res Unit, Antananarivo, Madagascar;Univ Toliara, Fac Sci, Toliara, Madagascar.
    Rosenthal, Philip J.
    Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA;Univ Calif San Francisco, Div HIV Infect Dis & Global Med, San Francisco, CA 94143 USA.
    Saunders, David L.
    Armed Forces Res Inst Regenerat Med, Bangkok, Thailand;US Army Med Mat Dev Act, Ft Detrick, MD USA.
    Sibley, Carol Hopkins
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England;Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA.
    Smithuis, Frank
    Myanmar Oxford Clin Res Unit, Yangon, Myanmar.
    Spring, Michele D.
    Armed Forces Res Inst Med Sci, Dept Immunol & Med, Bangkok, Thailand.
    Sondo, Paul
    Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, WWARN, Oxford, England;CRUN, Ouaga, Burkina Faso.
    Sreng, Sokunthea
    Natl Ctr Parasitol Entomol & Malaria Control, Phnom Penh, Cambodia.
    Starzengruber, Peter
    Med Univ Vienna, Inst Specif Prophylaxis & Trop Med, Vienna, Austria;Med Univ Vienna, Dept Lab Med, Div Clin Microbiol, Vienna, Austria.
    Stepniewska, Kasia
    Univ Oxford, Ctr Trop Med & Global Hlth, WWARN, Oxford, England.
    Suon, Seila
    Natl Ctr Parasitol Entomol & Malaria Control, Phnom Penh, Cambodia.
    Takala-Harrison, Shannon
    Univ Maryland, Sch Med, Inst Global Hlth, Div Malaria Res, Baltimore, MD 21201 USA.
    Thriemer, Kamala
    Inst Trop Med, Antwerp, Belgium;Menzies Sch Hlth Res, Darwin, NT, Australia.
    Thuy-Nhien, Nguyen
    Tun, Kyaw Myo
    Myanmar Oxford Clin Res Unit, Yangon, Myanmar;Def Serv Med Acad, Yangon, Myanmar.
    White, Nicholas J.
    Mahidol Univ, Fac Trop Med, Mahidol Oxford Res Unit, Bangkok, Thailand;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, Oxford, England.
    Woodrow, Charles
    Mahidol Univ, Fac Trop Med, Mahidol Oxford Res Unit, Bangkok, Thailand;Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med, Oxford, England.
    Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments: a WWARN individual patient data meta-analysis2019In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 17, p. 1-20, article id 1Article in journal (Refereed)
    Abstract [en]

    Background: Plasmodium falciparum infections with slow parasite clearance following artemisinin-based therapies are widespread in the Greater Mekong Subregion. A molecular marker of the slow clearance phenotype has been identified: single genetic changes within the propeller region of the Kelch13 protein (pfk13; Pf3D7_1343700). Global searches have identified almost 200 different non-synonymous mutant pfk13 genotypes. Most mutations occur at low prevalence and have uncertain functional significance. To characterize the impact of different pfk13 mutations on parasite clearance, we conducted an individual patient data meta-analysis of the associations between parasite clearance half-life (PC1/2) and pfk13 genotype based on a large set of individual patient records from Asia and Africa.

    Methods: A systematic literature review following the PRISMA protocol was conducted to identify studies published between 2000 and 2017 which included frequent parasite counts and pfk13 genotyping. Four databases (Ovid Medline, PubMed, Ovid Embase, and Web of Science Core Collection) were searched. Eighteen studies (15 from Asia, 2 from Africa, and one multicenter study with sites on both continents) met inclusion criteria and were shared. Associations between the log transformed PC1/2 values and pfk13 genotype were assessed using multivariable regression models with random effects for study site.

    Results: Both the pfk13 genotypes and the PC1/2 were available from 3250 (95%) patients (n=3012 from Asia (93%), n=238 from Africa (7%)). Among Asian isolates, all pfk13 propeller region mutant alleles observed in five or more specific isolates were associated with a 1.5- to 2.7-fold longer geometric mean PC1/2 compared to the PC1/2 of wild type isolates (all p≤0.002). In addition, mutant allele E252Q located in the P. falciparum region of pfk13 was associated with 1.5-fold (95%CI 1.4-1.6) longer PC1/2. None of the isolates from four countries in Africa showed a significant difference between the PC1/2 of parasites with or without pfk13 propeller region mutations.Previously, the association of six pfk13 propeller mutant alleles with delayed parasite clearance had been confirmed. This analysis demonstrates that 15 additional pfk13 alleles are associated strongly with the slow-clearing phenotype in Southeast Asia.

    Conclusion: Pooled analysis associated 20 pfk13 propeller region mutant alleles with the slow clearance phenotype, including 15 mutations not confirmed previously.

  • 4. Belmar-Lopez, Carolina
    et al.
    Mendoza, Gracia
    Öberg, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Burnet, Jerome
    Simon, Carlos
    Cervello, Irene
    Iglesias, Maite
    Carlos Ramirez, Juan
    Lopez-Larrubia, Pilar
    Quintanilla, Miguel
    Martin-Duque, Pilar
    Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth2013In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 11, p. 139-Article in journal (Refereed)
    Abstract [en]

    Background: Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior. The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications. Methods: We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes. Results: Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth. Conclusion: This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage.

  • 5.
    Björkman, A.
    et al.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden.
    Shakely, D.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden; Univ Gothenburg, Hlth Metr Sahlgrenska Acad, Gothenburg, Sweden.
    Ali, A. S.
    Zanzibar Malaria Eliminat Programme, Zanzibar, Tanzania.
    Morris, U.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden.
    Mkali, H.
    MEASURE Evaluat, Dar Es Salaam, Tanzania.
    Abbas, A. K.
    Zanzibar Malaria Eliminat Programme, Zanzibar, Tanzania.
    Al-Mafazy, A-W
    Zanzibar Malaria Eliminat Programme, Zanzibar, Tanzania.
    Haji, K. A.
    Zanzibar Malaria Eliminat Programme, Zanzibar, Tanzania.
    Mcha, J.
    Zanzibar Malaria Eliminat Programme, Zanzibar, Tanzania.
    Omar, R.
    Zanzibar Malaria Eliminat Programme, Zanzibar, Tanzania.
    Cook, J.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden; London Sch Hyg & Trop Med, London, England.
    Elfving, K.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden; Univ Gothenburg, Dept Infect Dis, Gothenburg, Sweden.
    Petzold, M.
    Univ Gothenburg, Ctr Appl Biostat, Gothenburg, Sweden.
    Sachs, M. C.
    Karolinska Inst, Inst Environm Med, Biostat Unit, Stockholm, Sweden.
    Aydin-Schmidt, B.
    Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden.
    Drakeley, C.
    London Sch Hyg & Trop Med, London, England.
    Msellem, M.
    Mnazi Mmoja Hosp, Training & Res, Zanzibar, Tanzania.
    Mårtensson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, International Maternal and Child Health (IMCH).
    From high to low malaria transmission in Zanzibar-challenges and opportunities to achieve elimination2019In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 17, article id 14Article in journal (Refereed)
    Abstract [en]

    Substantial global progress in the control of malaria in recent years has led to increased commitment to its potential elimination. Whether this is possible in high transmission areas of sub-Saharan Africa remains unclear. Zanzibar represents a unique case study of such attempt, where modern tools and strategies for malaria treatment and vector control have been deployed since 2003. We have studied temporal trends of comprehensive malariometric indices in two districts with over 100,000 inhabitants each. The analyses included triangulation of data from annual community-based cross-sectional surveys, health management information systems, vital registry and entomological sentinel surveys. The interventions, with sustained high-community uptake, were temporally associated with a major malaria decline, most pronounced between 2004 and 2007 and followed by a sustained state of low transmission. In 2015, the Plasmodium falciparum community prevalence of 0.43% (95% CI 0.23-0.73) by microscopy or rapid diagnostic test represented 96% reduction compared with that in 2003. The P. falciparum and P. malariae prevalence by PCR was 1.8% (95% CI 1.3-2.3), and the annual P. falciparum incidence was estimated to 8 infections including 2.8 clinical episodes per 1000 inhabitants. The total parasite load decreased over 1000-fold (99.9%) between 2003 and 2015. The incidence of symptomatic malaria at health facilities decreased by 94% with a trend towards relatively higher incidence in age groups > 5 years, a more pronounced seasonality and with reported travel history to/from Tanzania mainland as a higher risk factor. All-cause mortality among children < 5 years decreased by 72% between 2002 and 2007 mainly following the introduction of artemisinin-based combination therapies whereas the main reduction in malaria incidence followed upon the vector control interventions from 2006. Human biting rates decreased by 98% with a major shift towards outdoor biting by Anopheles arabiensis. Zanzibar provides new evidence of the feasibility of reaching uniquely significant and sustainable malaria reduction (pre-elimination) in a previously high endemic region in sub-Saharan Africa. The data highlight constraints of optimistic prognostic modelling studies. New challenges, mainly with outdoor transmission, a large asymptomatic parasite reservoir and imported infections, require novel tools and reoriented strategies to prevent a rebound effect and achieve elimination.

  • 6.
    Englund, Gunilla
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Hallberg, Pär
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. klin farm.
    Artursson, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Michaëlsson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Melhus, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Association between the number of coadministered P-glycoprotein inhibitors and serum digoxin levels in patients on therapeutic drug monitoring2004In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 2, p. 8-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The ABC transporter P-glycoprotein (P-gp) is recognized as a site for drug-drug interactions and provides a mechanistic explanation for clinically relevant pharmacokinetic interactions with digoxin. The question of whether several P-gp inhibitors may have additive effects has not yet been addressed. METHODS: We evaluated the effects on serum concentrations of digoxin (S-digoxin) in 618 patients undergoing therapeutic drug monitoring. P-gp inhibitors were classified as Class I, with a known effect on digoxin kinetics, or Class II, showing inhibition in vitro but no documented effect on digoxin kinetics in humans. Mean S-digoxin values were compared between groups of patients with different numbers of coadministered P-gp inhibitors by a univariate and a multivariate model, including the potential covariates age, sex, digoxin dose and total number of prescribed drugs. RESULTS: A large proportion (47%) of the digoxin patients undergoing therapeutic drug monitoring had one or more P-gp inhibitor prescribed. In both univariate and multivariate analysis, S-digoxin increased in a stepwise fashion according to the number of coadministered P-gp inhibitors (all P values < 0.01 compared with no P-gp inhibitor). In multivariate analysis, S-digoxin levels were 1.26 +/- 0.04, 1.51 +/- 0.05, 1.59 +/- 0.08 and 2.00 +/- 0.25 nmol/L for zero, one, two and three P-gp inhibitors, respectively. The results were even more pronounced when we analyzed only Class I P-gp inhibitors (1.65 +/- 0.07 for one and 1.83 +/- 0.07 nmol/L for two). CONCLUSIONS: Polypharmacy may lead to multiple drug-drug interactions at the same site, in this case P-gp. The S-digoxin levels increased in a stepwise fashion with an increasing number of coadministered P-gp inhibitors in patients taking P-gp inhibitors and digoxin concomitantly. As coadministration of digoxin and P-gp inhibitors is common, it is important to increase awareness about P-gp interactions among prescribing clinicians.

  • 7.
    Gnanapragasam, V. J.
    et al.
    Univ Cambridge, Dept Surg & Oncol, Acad Urol Grp, Box 279 S4,Cambridge Biomed Campus, Cambridge CB2 0QQ, England.;Addenbrookes Hosp, Dept Urol, Cambridge, England..
    Bratt, O.
    Lund Univ, Dept Translat Med, Div Urol Canc, Lund, Sweden..
    Muir, K.
    Univ Manchester, Inst Populat Hlth, Manchester, Lancs, England..
    Lees, L. S.
    Singapore Gen Hosp, Dept Urol, Singapore, Singapore..
    Huang, H. H.
    Singapore Gen Hosp, Dept Urol, Singapore, Singapore..
    Stattin, Pär
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology. Umea Univ, Dept Surg & Perioperat Sci, Urol & Androl, Umea, Sweden.
    Lophatananon, A.
    Univ Manchester, Inst Populat Hlth, Manchester, Lancs, England..
    The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study2018In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 16, article id 31Article in journal (Refereed)
    Abstract [en]

    Background:

    The purpose of this study is to validate a new five-tiered prognostic classification system to better discriminate cancer-specific mortality in men diagnosed with primary non-metastatic prostate cancer.

    Methods:

    We applied a recently described five-strata model, the Cambridge Prognostic Groups (CPGs 1-5), in two international cohorts and tested prognostic performance against the current standard three-strata classification of low-, intermediate- or high-risk disease. Diagnostic clinico-pathological data for men obtained from the Prostate Cancer data Base Sweden (PCBaSe) and the Singapore Health Study were used. The main outcome measure was prostate cancer mortality (PCM) stratified by age group and treatment modality.

    Results:

    The PCBaSe cohort included 72,337 men, of whom 7162 died of prostate cancer. The CPG model successfully classified men with different risks of PCM with competing risk regression confirming significant intergroup distinction (p < 0.0001). The CPGs were significantly better at stratified prediction of PCM compared to the current three-tiered system (concordance index (C-index) 0.81 vs. 0.77, p < 0.0001). This superiority was maintained for every age group division (p < 0.0001). Also in the ethnically different Singapore cohort of 2550 men with 142 prostate cancer deaths, the CPG model outperformed the three strata categories (C-index 0.79 vs. 0.76, p < 0.0001). The model also retained superior prognostic discrimination in the treatment sub-groups: radical prostatectomy (n = 20,586), C-index 0.77 vs. 074; radiotherapy (n = 11,872), C-index 0.73 vs. 0.69; and conservative management (n = 14,950), C-index 0.74 vs. 0.73. The CPG groups that sub-divided the old intermediate-risk (CPG2 vs. CPG3) and high-risk categories (CPG4 vs. CPG5) significantly discriminated PCM outcomes after radical therapy or conservative management (p < 0.0001).

    Conclusions:

    This validation study of nearly 75,000 men confirms that the CPG five-tiered prognostic model has superior discrimination compared to the three-tiered model in predicting prostate cancer death across different age and treatment groups. Crucially, it identifies distinct sub-groups of men within the old intermediate-risk and high-risk criteria who have very different prognostic outcomes. We therefore propose adoption of the CPG model as a simple-to-use but more accurate prognostic stratification tool to help guide management for men with newly diagnosed prostate cancer.

  • 8. Hall, Per
    et al.
    Ploner, Alexander
    Bjohle, Judith
    Huang, Fei
    Lin, Chin-Yo
    Liu, Edison T
    Miller, Lance D
    Nordgren, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Pawitan, Yudi
    Shaw, Peter
    Skoog, Lambert
    Smeds, Johanna
    Wedren, Sara
    Ohd, John
    Bergh, Jonas
    Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study2006In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 4, p. 16-Article in journal (Refereed)
    Abstract [en]

    Background: Postmenopausal hormone-replacement therapy (HRT) increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood.

    Methods: We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women.

    Results: HRT use in patients with estrogen receptor ( ER) protein positive tumors (n = 72) was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen.

    Conclusion: Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells.

  • 9.
    Kampf, Caroline
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Bergman, Julia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Oksvold, Per
    Asplund, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Navani, Sanjay
    Wiking, Mikaela
    Lundberg, Emma
    Uhlen, Mathias
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    A tool to facilitate clinical biomarker studies - a tissue dictionary based on the Human Protein Atlas2012In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 10, p. 103-Article in journal (Refereed)
    Abstract [en]

    The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.

  • 10.
    Larsson, Susanna C.
    et al.
    Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-17177 Stockholm, Sweden.
    Burgess, Stephen
    Univ Cambridge, MRC Biostat Unit, Cambridge, England;Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England.
    Michaëlsson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Serum magnesium levels and risk of coronary artery disease: Mendelian randomisation study2018In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 16, article id 68Article in journal (Refereed)
    Abstract [en]

    Background: Observational studies have shown that serum magnesium levels are inversely associated with risk of cardiovascular disease, but whether this association is causal is unknown. We conducted a Mendelian randomisation study to investigate whether serum magnesium levels may be causally associated with coronary artery disease (CAD). Methods: This Mendelian randomisation analysis is based on summary-level data from the CARDIoGRAMplusC4D consortium's 1000 Genomes-based genome-wide association meta-analysis of 48 studies with a total of 60,801 CAD cases and 123,504 non-cases. Six single-nucleotide polymorphisms associated with serum magnesium levels at genome-wide significance were used as instrumental variables. Results: A genetic predisposition to higher serum magnesium levels was inversely associated with CAD. In conventional Mendelian randomisation analysis, the odds ratio of CAD was 0.88 (95% confidence interval [CI] 0.78 to 0.99; P = 0.03) per 0.1-mmol/L (about 1 standard deviation) increase in genetically predicted serum magnesium levels. Results were consistent in sensitivity analyses using the weighted median and heterogeneity-penalised model averaging methods, with odds ratios of 0.84 (95% CI 0.72 to 0.98; P = 0.03) and 0.83 (95% CI 0.71 to 0.96; P = 0.02), respectively. Conclusions: This study based on genetics provides evidence that serum magnesium levels are inversely associated with risk of CAD. Randomised controlled trials elucidating whether magnesium supplementation lowers the risk of CAD, preferably in a setting at higher risk of hypomagnesaemia, are warranted.

  • 11. Lesuis, Nienke
    et al.
    Befrits, Ragnar
    Nyberg, Filippa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Dermatology and Venereology.
    van Vollenhoven, Ronald F.
    Gender and the treatment of immune-mediated chronic inflammatory diseases: rheumatoid arthritis, inflammatory bowel disease and psoriasis: an observational study2012In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 10, p. 82-Article in journal (Refereed)
    Abstract [en]

    Background: Rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and psoriasis are immune-mediated inflammatory diseases with similarities in pathophysiology, and all can be treated with similar biological agents. Previous studies have shown that there are gender differences with regard to disease characteristics in RA and IBD, with women generally having worse scores on pain and quality of life measurements. The relationship is less clear for psoriasis. Because treatment differences between men and women could explain the dissimilarities, we investigated gender differences in the disease characteristics before treatment initiation and in the biologic treatment prescribed. Methods: Data on patients with RA or IBD were collected from two registries in which patients treated with biologic medication were enrolled. Basic demographic data and disease activity parameters were collected from a time point just before the initiation of the biologic treatment. For patients with psoriasis, the data were taken from the 2010 annual report of the Swedish Psoriasis Register for systemic treatment, which included also non-biologic treatment. For all three diseases, the prescribed treatment and disease characteristics were compared between men and women. Results: In total, 4493 adult patients were included in the study (1912 with RA, 131 with IBD, and 2450 with psoriasis). Most of the treated patients with RA were women, whereas most of the patients with IBD or psoriasis were men. There were no significant differences between men and women in the choice of biologics. At treatment start, significant gender differences were seen in the subjective disease measurements for both RA and psoriasis, with women having higher (that is, worse) scores than men. No differences in objective measurements were found for RA, but for psoriasis men had higher (that is, worse) scores for objective disease activity measures. A similar trend to RA was seen in IBD. Conclusions: Women with RA or psoriasis scored significantly higher on subjective, but not on objective, disease activity measures than men, and the same trend was seen in IBD. This indicates that at the same level of treatment, the disease has a greater effect in women. These findings might suggest that in all three diseases, subjective measures are discounted to some extent in the therapeutic decision-making process, which could indicate undertreatment in female patients.

  • 12.
    McAleese, Kirsty E.
    et al.
    Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne, Tyne & Wear, England..
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Charidimou, Andreas
    Harvard Med Sch, Massachusetts Gen Hosp Stroke Res Ctr, Dept Neurol, Hemorrhag Stroke Res Program, Boston, MA USA..
    De Reuck, Jacques
    Univ Hosp Lille, Stroke Res Team, Lille, France..
    Grinberg, Lea T.
    Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA.;Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA.;Univ Sao Paulo, Sch Med, Dept Pathol LIM 22, Sao Paulo, Brazil..
    Hainsworth, Atticus H.
    St Georges Univ London, Inst Cardiovasc & Cell Sci, London, England..
    Hortobagyi, Tibor
    Univ Debrecen, Dept Neuropathol, Debrecen, Hungary..
    Ince, Paul
    Sheffield Inst Translat Neurosci, Sheffield, S Yorkshire, England..
    Jellinger, Kurt
    Inst Clin Neurobiol, Vienna, Austria..
    Gao, Jing
    Beijing Union Med Coll Hosp, Dept Neurol, Beijing, Peoples R China..
    Kalaria, Raj N.
    Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne, Tyne & Wear, England..
    Kovacs, Gabor G.
    Med Univ Vienna, Inst Neurol, Vienna, Austria..
    Kovari, Eniko
    Univ Geneva, Dept Mental Hlth & Psychiat, Geneva, Switzerland..
    Love, Seth
    Univ Bristol, Clin Neurosci, Bristol, Avon, England..
    Popovic, Mara
    Univ Ljubljana, Inst Pathol, Fac Med, Ljubljana, Slovenia..
    Skrobot, Olivia
    Univ Bristol, Clin Neurosci, Bristol, Avon, England..
    Taipa, Ricardo
    Univ Porto, Ctr Hosp Porto, Unit Neuropathol, Oporto, Portugal..
    Thal, Dietmar R.
    Katholieke Univ Leuven, Dept Neurosci, Leuven, Belgium.;UZ Leuven, Dept Pathol, Leuven, Belgium..
    Werring, David
    UCL, Inst Neurol, London, England..
    Wharton, Stephen B.
    Sheffield Inst Translat Neurosci, Sheffield, S Yorkshire, England..
    Attems, Johannes
    Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne, Tyne & Wear, England..
    Post-mortem assessment in vascular dementia: advances and aspirations2016In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 14, article id 129Article in journal (Refereed)
    Abstract [en]

    Background: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. Discussion: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. Conclusion: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses.

  • 13. Morris, Ulrika
    et al.
    Msellem, Mwinyi I
    Mkali, Humphrey
    Islam, Atiqul
    Aydin-Schmidt, Berit
    Jovel, Irina
    Shija, Shija Joseph
    Khamis, Mwinyi
    Ali, Safia Mohammed
    Hodzic, Lamija
    Magnusson, Ellinor
    Poirot, Eugenie
    Bennett, Adam
    Sachs, Michael C
    Tarning, Joel
    Mårtensson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, International Maternal and Child Health (IMCH), International Child Health and Nutrition.
    Ali, Abdullah S
    Björkman, Anders
    A cluster randomised controlled trial of two rounds of mass drug administration in Zanzibar, a malaria pre-elimination setting-high coverage and safety, but no significant impact on transmission.2018In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 16, no 1, article id 215Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Mass drug administration (MDA) has the potential to interrupt malaria transmission and has been suggested as a tool for malaria elimination in low-endemic settings. This study aimed to determine the effectiveness and safety of two rounds of MDA in Zanzibar, a pre-elimination setting.

    METHODS: A cluster randomised controlled trial was conducted in 16 areas considered as malaria hotspots, with an annual parasite index of > 0.8%. The areas were randomised to eight intervention and eight control clusters. The intervention included two rounds of MDA with dihydroartemisinin-piperaquine and single low-dose primaquine 4 weeks apart in May-June 2016. Primary and secondary outcomes were cumulative confirmed malaria case incidences 6 months post-MDA and parasite prevalences determined by PCR 3 months post-MDA. Additional outcomes included intervention coverage, treatment adherence, occurrence of adverse events, and cumulative incidences 3, 12, and 16 months post-MDA.

    RESULTS: Intervention coverage was 91.0% (9959/10944) and 87.7% (9355/10666) in the first and second rounds, respectively; self-reported adherence was 82.0% (881/1136) and 93.7% (985/1196). Adverse events were reported in 11.6% (147/1268) and 3.2% (37/1143) of post-MDA survey respondents after both rounds respectively. No serious adverse event was reported. No difference in cumulative malaria case incidence was observed between the control and intervention arms 6 months post-MDA (4.2 and 3.9 per 1000 population; p = 0.94). Neither was there a difference in PCR-determined parasite prevalences 3 months post-MDA (1.4% and 1.7%; OR = 1.0, p = 0.94), although having received at least the first MDA was associated with reduced odds of malaria infection (aOR = 0.35; p = 0.02). Among confirmed malaria cases at health facilities, 26.0% and 26.3% reported recent travel outside Zanzibar in the intervention and control shehias (aOR ≥ 85; p ≤ 0.001).

    CONCLUSIONS: MDA was implemented with high coverage, adherence, and tolerability. Despite this, no significant impact on transmission was observed. The findings suggest that two rounds of MDA in a single year may not be sufficient for a sustained impact on transmission in a pre-elimination setting, especially when the MDA impact is restricted by imported malaria. Importantly, this study adds to the limited evidence for the use of MDA in low transmission settings in sub-Saharan Africa.

    TRIAL REGISTRATION: ClinicalTrials.gov, NCT02721186 (registration date: March 29, 2016).

  • 14. Perez-Cornago, Aurora
    et al.
    Appleby, Paul N
    Pischon, Tobias
    Tsilidis, Konstantinos K
    Tjønneland, Anne
    Olsen, Anja
    Overvad, Kim
    Kaaks, Rudolf
    Kühn, Tilman
    Boeing, Heiner
    Steffen, Annika
    Trichopoulou, Antonia
    Lagiou, Pagona
    Kritikou, Maria
    Krogh, Vittorio
    Palli, Domenico
    Sacerdote, Carlotta
    Tumino, Rosario
    Bueno-de-Mesquita, H Bas
    Agudo, Antonio
    Larrañaga, Nerea
    Molina-Portillo, Elena
    Barricarte, Aurelio
    Chirlaque, Maria-Dolores
    Quirós, J Ramón
    Stattin, Pär
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology. Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden.
    Häggström, Christel
    Wareham, Nick
    Khaw, Kay-Tee
    Schmidt, Julie A
    Gunter, Marc
    Freisling, Heinz
    Aune, Dagfinn
    Ward, Heather
    Riboli, Elio
    Key, Timothy J
    Travis, Ruth C
    Tall height and obesity are associated with an increased risk of aggressive prostate cancer: results from the EPIC cohort study2017In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 15, no 1, article id 115Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The relationship between body size and prostate cancer risk, and in particular risk by tumour characteristics, is not clear because most studies have not differentiated between high-grade or advanced stage tumours, but rather have assessed risk with a combined category of aggressive disease. We investigated the association of height and adiposity with incidence of and death from prostate cancer in 141,896 men in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: Multivariable-adjusted Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). After an average of 13.9 years of follow-up, there were 7024 incident prostate cancers and 934 prostate cancer deaths.

    RESULTS: Height was not associated with total prostate cancer risk. Subgroup analyses showed heterogeneity in the association with height by tumour grade (P heterogeneity = 0.002), with a positive association with risk for high-grade but not low-intermediate-grade disease (HR for high-grade disease tallest versus shortest fifth of height, 1.54; 95% CI, 1.18-2.03). Greater height was also associated with a higher risk for prostate cancer death (HR = 1.43, 1.14-1.80). Body mass index (BMI) was significantly inversely associated with total prostate cancer, but there was evidence of heterogeneity by tumour grade (P heterogeneity = 0.01; HR = 0.89, 0.79-0.99 for low-intermediate grade and HR = 1.32, 1.01-1.72 for high-grade prostate cancer) and stage (P heterogeneity = 0.01; HR = 0.86, 0.75-0.99 for localised stage and HR = 1.11, 0.92-1.33 for advanced stage). BMI was positively associated with prostate cancer death (HR = 1.35, 1.09-1.68). The results for waist circumference were generally similar to those for BMI, but the associations were slightly stronger for high-grade (HR = 1.43, 1.07-1.92) and fatal prostate cancer (HR = 1.55, 1.23-1.96).

    CONCLUSIONS: The findings from this large prospective study show that men who are taller and who have greater adiposity have an elevated risk of high-grade prostate cancer and prostate cancer death.

  • 15. Santosa, Ailiana
    et al.
    Rocklov, Joacim
    Högberg, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Byass, Peter
    Achieving a 25% reduction in premature non-communicable disease mortality: the Swedish population as a cohort study2015In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 13, article id 65Article in journal (Refereed)
    Abstract [en]

    Background: The 2012 World Health Assembly set a target for Member States to reduce premature non-communicable disease (NCD) mortality by 25% over the period 2010 to 2025. This reflected concerns about increasing NCD mortality burdens among productive adults globally. This article first considers whether the WHO target of a 25% reduction in the unconditional probability of dying between ages of 30 and 70 from NCDs (cardiovascular diseases, cancer, diabetes, or chronic respiratory diseases) has already taken place in Sweden during an equivalent 15-year period. Secondly, it assesses which population sub-groups have been more or less successful in contributing to overall changes in premature NCD mortality in Sweden. Methods: A retrospective dynamic cohort database was constructed from Swedish population registers in the Linnaeus database, covering the entire population in the age range 30 to 69 years for the period 1991 to 2006, which was used directly to measure reductions in premature NCD mortality using a life table method as specified by the WHO. Multivariate Poisson regression models were used to assess the contributions of individual background factors to decreases in premature NCD mortality. Results: A total of 292,320 deaths occurred in the 30 to 69 year age group during the period 1991 to 2006, against 70,768,848 person-years registered. The crude all-cause mortality rate declined from 5.03 to 3.72 per 1,000 person-years, a 26% reduction. Within this, the unconditional probability of dying between the ages of 30 and 70 from NCD causes as defined by the WHO fell by 30.0%. Age was consistently the strongest determinant of NCD mortality. Background determinants of NCD mortality changed significantly over the four time periods 1991-1994, 1995-1998, 1999-2002, and 2003-2006. Conclusions: Sweden, now at a late stage of epidemiological transition, has already exceeded the 25% premature NCD mortality reduction target during an earlier 15-year period. This should be encouraging news for countries currently implementing premature NCD mortality reduction programmes. Our findings suggest, however, that it may be difficult for Sweden and other late-transition countries to reach the current 25 x 25 target, particularly where substantial premature mortality reductions have already been achieved.

  • 16.
    Ålander, Ture
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology.
    Svärdsudd, Kurt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology.
    Johansson, Sven-Erik
    Agréus, Lars
    Psychological illness is commonly associated with functional gastrointestinal disorders and is important to consider during patient consultation: a population-based study2005In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 3, no 1, p. 8-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Some individuals with functional gastrointestinal disorders (FGID) suffer long-lasting symptoms without ever consulting their doctors. Our aim was to study co-morbidity and lifestyle differences among consulters and non-consulters with persistent FGID and controls in a defined adult population. METHODS: A random sample of the general adult Swedish population was obtained by a postal questionnaire. The Abdominal Symptom Questionnaire (ASQ) was used to measure GI symptomatology and grade of GI symptom severity and the Complaint Score Questionnaire (CSQ) was used to measure general symptoms. Subjects were then grouped for study by their symptomatic profiles. Subjects with long-standing FGID (n = 141) and subjects strictly free from gastrointestinal (GI) symptoms (n = 97) were invited to attend their local health centers for further assessment. RESULTS: Subjects with FGID have a higher risk of psychological illness [OR 8.4, CI95(4.0-17.5)] than somatic illness [OR 2.8, CI95(1.3-5.7)] or ache and fatigue symptoms [OR 4.3, CI95(2.1-8.7)]. Subjects with psychological illness have a higher risk of severe GI symptoms than controls; moreover they have a greater chance of being consulters. Patients with FGID have more severe GI symptoms than non-patients. CONCLUSION: There is a strong relation between extra-intestinal, mental and somatic complaints and FGID in both patients and non-patients. Psychological illness increases the chance of concomitantly having more severe GI symptoms, which also enhance consultation behaviour.

  • 17.
    Mårtensson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, International Maternal and Child Health (IMCH), International Child Health and Nutrition.
    Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data.2016In: BMC Medicine, ISSN 1741-7015, E-ISSN 1741-7015, Vol. 14, article id 79Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Gametocytes are responsible for transmission of malaria from human to mosquito. Artemisinin combination therapy (ACT) reduces post-treatment gametocyte carriage, dependent upon host, parasite and pharmacodynamic factors. The gametocytocidal properties of antimalarial drugs are important for malaria elimination efforts. An individual patient clinical data meta-analysis was undertaken to identify the determinants of gametocyte carriage and the comparative effects of four ACTs: artemether-lumefantrine (AL), artesunate/amodiaquine (AS-AQ), artesunate/mefloquine (AS-MQ), and dihydroartemisinin-piperaquine (DP).

    METHODS: Factors associated with gametocytaemia prior to, and following, ACT treatment were identified in multivariable logistic or Cox regression analysis with random effects. All relevant studies were identified through a systematic review of PubMed. Risk of bias was evaluated based on study design, methodology, and missing data.

    RESULTS: The systematic review identified 169 published and 9 unpublished studies, 126 of which were shared with the WorldWide Antimalarial Resistance Network (WWARN) and 121 trials including 48,840 patients were included in the analysis. Prevalence of gametocytaemia by microscopy at enrolment was 12.1 % (5887/48,589), and increased with decreasing age, decreasing asexual parasite density and decreasing haemoglobin concentration, and was higher in patients without fever at presentation. After ACT treatment, gametocytaemia appeared in 1.9 % (95 % CI, 1.7-2.1) of patients. The appearance of gametocytaemia was lowest after AS-MQ and AL and significantly higher after DP (adjusted hazard ratio (AHR), 2.03; 95 % CI, 1.24-3.12; P = 0.005 compared to AL) and AS-AQ fixed dose combination (FDC) (AHR, 4.01; 95 % CI, 2.40-6.72; P < 0.001 compared to AL). Among individuals who had gametocytaemia before treatment, gametocytaemia clearance was significantly faster with AS-MQ (AHR, 1.26; 95 % CI, 1.00-1.60; P = 0.054) and slower with DP (AHR, 0.74; 95 % CI, 0.63-0.88; P = 0.001) compared to AL. Both recrudescent (adjusted odds ratio (AOR), 9.05; 95 % CI, 3.74-21.90; P < 0.001) and new (AOR, 3.03; 95 % CI, 1.66-5.54; P < 0.001) infections with asexual-stage parasites were strongly associated with development of gametocytaemia after day 7.

    CONCLUSIONS: AS-MQ and AL are more effective than DP and AS-AQ FDC in preventing gametocytaemia shortly after treatment, suggesting that the non-artemisinin partner drug or the timing of artemisinin dosing are important determinants of post-treatment gametocyte dynamics.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf